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Figure 3 Plot of the relative 

bias of the variance estimates of the

treatment effect for the 

normally-distributed errors model.

Figure 4 Plot of the relative 

bias of the treatment effect 

estimate for the quasi-

Poisson errors model for 

data with dependent errors.

Figure 5 Plot of the relative bias of the variance estimate for data with 

dependent errors (left) and independent errors (right) under the quasi-

Poisson errors model.

• In the normal errors model, when the treatment effect is sufficiently 

large, the estimates of the treatment effect are unbiased.

• Under the quasi-Poisson model, when the baseline is sufficiently large 

or the treatment effect is sufficiently large, the treatment effects are 

unbiased. When the errors are independent there is slightly less bias.

• When there is no autocorrelation and the treatment effect estimates are 

unbiased, the variance estimates are unbiased or close to unbiased. The 

quasi-Poisson model is potentially concerning, even under 

independence.

• When autocorrelation is present, the variance estimates are all biased. 

However, the use of meta-analytic methods with robust variance 

estimation proposed by Pustejovsky (2017) could be used to find the 

common effects within studies and still obtain unbiased variance 

estimates.

The error structure

• We chose to examine the model using normally-distributed errors to 

match common modeling assumptions.

• We chose to examine the model using quasi-Poisson errors for two 

reasons:

• Quasi-Poisson errors more closely match the distribution of count-

type measurements often used in the direct observation of 

behaviors in SCDs.

• Work by Rogosa and Ghandour (1991) using the alternating 

renewal process to model the direct observation of behavior 

suggests that, when frequency counts are used to directly observed 

behavior, there may be over- or under-dispersion in the variance 

with respect to the Poisson distribution. Quasi-Poisson errors 

operate under less restrictive assumptions than Poisson-distributed 

errors. 

• Under both types of error structures, we assume that the errors are 

independent. This is a somewhat unusual assumption. However, 

Huitema and McKean (1998) pointed out that that many estimates of 

autocorrelation in the data may arise when the models do not fit the 

data well. If there are trends in the data that have not been modeled 

appropriately, the errors may be serially correlated. 

Example: Thorne (2005)

Thorne (2008) examined the effects of a group contingency intervention 

on academic engagement and problem behaviors of at-risk students. We 

applied both forms of our model to the problem behavior data from the 

first four cases. We compared estimates from the normally-distributed 

errors model to a simple change-in-levels model. We compared the 

estimates from the quasi-Poisson errors model to the R1 log-response ratio 

from Pustejovsky (2015). Our investigation focuses primarily on the 

estimates of treatment effects.
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The nonlinear model

Let μt represent the mean behavioral outcome μ, which occurs across 

equally space time points t = 1,…,n. Let Trtt act as an indicator, where 

Trtt = 0 when treatment does not occur during time t and Trtt = 1 if 

treatment occurs during time t. Given some link function g(x), where g(μt) 

= ηt then,

ηt = β0 + 𝛽1 1 − 𝜔 /(1 − 𝜔𝑚)  𝑡=1
𝑖 𝜔𝑖−𝑡 𝑇𝑟𝑡𝑖.

Under the identity link (normally-distributed errors):

• β0 is the mean outcome in the absence of treatment.

• β1 is the additive effect of treatment at the time point m.

Under the log link (quasi-Poisson errors):

• exp(β0) is the mean outcome in the absence of treatment.

• exp(β1) the multiplicative effect of treatment at time point m.

Under either link:

• ω represents the delay of the effect of treatment, where ωϵ[0,1).

• When ω = 0, there is no delay – the effect of treatment is 

immediate.

• As ω increases towards 1, full effect of treatment is increasingly 

delayed. A delay of 1 would represent full or infinite delay.

Figure 1. Example functional forms where β0 = 0, 𝛽1 = 1, across several 

values of ω.

Table 1. Estimates and standard errors for problem behavior from Thorne 

(2005) from the normally-distributed errors models. 

Table 2. Estimates and standard errors for problem behavior from Thorne 

(2005) from the quasi-Poisson errors model and the R1 log-response ratio. 

• In both cases, the treatment effects estimated by our nonlinear model are 

more extreme than the treatment effects estimated by the comparable 

model. This is expected, because the comparison models treatment effects 

are based on the treatment phase mean, whereas our model focuses on the 

treatment effects at or near the end of treatment.

Simulation study

In order to investigate the properties of the model under conditions similar 

those seen in applied studies, we performed a simulation study. Since we 

cannot assume a lack of autocorrelated data, we examined both independent 

and serially correlated data. Serially correlated data was generated with an 

AR(1) structure. We generated normally-distributed AR(1) data using 

arima.sim in R and Poisson-distributed AR(1) data using binomial thinning 

(McKenzie, 1988), matching generated data to the model with the closely 

related error structure. All of the data were for ABAB designs. For the 

normally-distributed errors the total variance was fixed to 1 and the value of 

the variance of the innovations was calculated from the autocorrelation. We 

focused on the bias of the treatment effect and accompanying variance 

estimates.

Table 3. Simulation Conditions

Figure 2 Plot of the relative 

bias of the treatment effect 

for the normally-distributed

errors model.
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Introduction
Recently, most research in parametric models for single-case designs 

(SCDs) has focused  on multiple baseline designs, while treatment 

reversal designs have received considerably less attention. In part this can 

be attributed to the relatively simple models required, as multiple baseline 

designs require only a single baseline phase and a single treatment phase. 

Well designed treatment reversals require more than two phases. The 

What Works Clearinghouse guidelines (Kratochwill et al., 2010)  require 

that a treatment reversal design have at minimum two baseline and two 

treatment phases to meet standards.

Moreover, treatment reversal designs assume that the treatment is 

something that can be withdrawn and treatment effects will decay. In 

order to develop a model that is credible and casually interpretable, the 

effect of treatment must be modeled as a consequence of the repeated or 

constant application of treatment. Case-level models for SCDs have 

focused on linear change within phases (Gorsuch 1983; Center, Skiba, 

and Casey, 1985; Maggin et al. 2011), or models for nonlinear growth 

after treatment that do not also model decay after withdrawal (Moeyaert

et al., 2014; Shadish, Kyse, Rindskopf, 2013; Hembry et al., 2015; 

Rindskopf 2013).

In this study we extend work from Pustejovksy (2013) that suggested a 

particular form of the set of models for the analysis of interventions in 

time series proposed by Box and Tiao (1976). We propose a simple non-

linear model that allows for both non-linear growth due to treatment as 

well as non-linear decay after its withdrawal. In addition, we examine the 

performance of the model using both normally-distributed errors and 

quasi-Poisson errors.

Case
Nonlinear 

Treatment Effect se
Change in Levels 
Treatment Effect se

Participant 1 -18.97 2.32 -12.50 2.42

Participant 2 -17.39 2.37 -15.48 2.13

Participant 3 -6.17 1.35 -5.55 1.17

Participant 4 -20.48 2.72 -17.70 2.52

Case
Nonlinear

Treatment Effect se R1 Se exp(Trt) exp(R1)

Participant 1 -1.91 0.21 -1.22 0.25 0.15 0.30

Participant 2 -2.25 0.22 -1.91 0.24 0.11 0.15

Participant 3 -0.74 0.15 -0.65 0.14 0.48 0.52

Participant 4 -1.38 0.18 -1.17 0.18 0.25 0.31

Factor Normally-distributed errors Quasi-Poisson errors

Baseline Β0: 0 exp(β0): 5, 15, 35

Treatment Effect Β1: 0.5 to 2.50 in steps of 0.50 exp(β1): 0.20, and 0.50 to 2.50 in steps of 0.50

Delay Parameter 0 to 0.90 in steps of 0.30 0 to 0.90 in steps of 0.30

Points Per Phase 3,5,10 3,5,10


