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Methodological Challenges for Meta-Analysis 

 Simulated two-group designs with standardized mean difference effect sizes, based on a two-
level model.

 Each study included multiple correlated outcomes, creating dependent effects.
 Analysis conducted using R packages (metaphor::trimfill() and clubSandwich),  and custom 

written R code for 3PSM. 
 A one-sided p-value of 0.025 is used to introduce outcome reporting censoring and for one-sided 

detection tests for outcome reporting bias. 

 Results provide guidance to applied researchers who wish to apply valid and powerful methods 
to detect selective outcome reporting when synthesizing dependent effects.
 Do not ignore dependence; doing so inflates Type-I error rates for all univariate detection 

methods evaluated in this study.
 Regression test variants based on aggregating or modeling dependent effect sizes with robust 

variance estimation results in proper Type-I error.
 Regression tests that maintain Type-I error rates have little to no power to detect selection 

bias, except under strong censoring 
 Power is lower when between study heterogeneity is high. 

 Future research should consider developing multivariate methods to test for selective outcome 
reporting; specifically, refining the 3PSM test to handle dependency.

 Limitations
 Evaluation of performance with single effect size index (standardized mean difference).
 Simple, two group between subject design, with correlated multiple outcomes.
 Limited number of methods available to handle dependence and detect publication bias.

Power

3 Parameter Selection Model Trim & Fill Regression Test Variants

 Regression test variants have inflated Type I error rates when dependency is 
ignored. 

 For all levels of heterogeneity and study sample sizes examined, the nominal 
alpha level is maintained when dependent effects are aggregated or modelled 
with robust variance estimation. 

 Ignoring dependence inflates Type-I error rates for the 3PSM and Trim & Fill methods, especially as true effect 
size and the study sample (k) increases. 

 Aggregation also inflates Type-I error rates for these methods if the true effect size exceeds 𝜇𝜇 = 0.2. 
 Increased heterogeneity and a smaller study sample (k = 20) decreases the rejection rate to the nominal level 

(𝛼𝛼 = 0.05) when dependence is aggregated.

 Meta-analysis is a set of statistical tools for synthesizing results from multiple, primary studies on 
a common research topic (Glass, 1976).

 Two common methodological problems in meta-analysis: 

 Outcome Reporting Bias (ORB)
 Selective reporting and publication based on statistical significance of results (Rothstein et al., 2006).
 Systematically biases pooled effect estimates and threaten validity of results (Sutton, 2009).
 Most methods to detect ORB assume univariate effect size estimates (Sutton, 2009).

 Dependent Effect Sizes
 Primary studies often contribute multiple, statistically dependent effect sizes. 
 Multiple outcomes, treatment group comparisons, and longitudinal designs (Gleser & Olkin, 2009).
 Many methods to handle dependency: ad hoc solutions and multivariate models (Becker, 2000).

 Little available research on how to assess the presence of selective outcome reporting when 
synthesis includes dependent effect sizes.
 Few methodological and applied studies have incorporated both (e.g. Bediou, 2018, Hwang et al., 2018, Kirkham, 

2013, Stevens et al., 2018).

 Need to identify, evaluate, and disseminate methods that simultaneously address both of these 
challenges.

Discussion

 Across degrees of selective publication, Regression Tests rates have limited power, particularly 
when the true effect size is (𝜇𝜇 =  0 or 0.8); adequate power is only obtained with a moderate true 
effect size (0.5), low heterogeneity, and strong selective publication censoring (𝜋𝜋 = 1).

 There is no difference in power between the regression tests when dependence is aggregated 
or modelled.

 The 3PSM has substantially higher power than the other detection tests, but is miscalibrated in 
the absence of outcome reporting bias (𝜋𝜋 = 0).

Simulation Study - Method

 Dependence Methods & ORB Detection tests:
 Ignore or aggregate (simple average) and application of univariate detection tests:

 Trim & Fill (Duval & Tweedie, 2000)

 3 Parameter Selection Model (Hedges & Vevea, 2005)

 Regression Test variants (Egger et al., 1997, Pustejovksy & Rodgers, 2018)

 Multivariate meta-regression using robust variance estimation to account for dependence, 
combined with ORB Regression Test Variants.
 Referred to as Egg Sandwich.

 Performance Criteria: 
 Type I error rates in the absence of outcome reporting bias (𝜋𝜋 = 0)
 Power to detect outcome reporting bias when selection introduced at varying levels of 

censoring (𝜋𝜋 > 0).

Figure 3: Type-I error rates for Regression Test variants when dependent effects are ignored, aggregated or 
modeled for samples of k = 80 studies. 

Figure 4: Power of all methods to detect selective publication when dependent effects are aggregated or modeled 
for samples of k = 80 studies. 

Figure 1: Type-I error rates for 3PSM test when dependence is ignored, or 
aggregated for samples of k = 80 studies. 

Figure 2: Type-I error rates for Trim & Fill test when dependence is ignored, 
or aggregated for samples of k = 80 studies. 
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