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The problem
Available methods for meta-analysis of �ndings from single-case designs include:

One-stage methods involving modeling of raw data from across multiple
studies.
Two-stage methods involving calculation of effect sizes and subsequent
meta-analysis.

The two-stage approach works well for some effect size measures, such as log
response ratios, but performs inadequately for the non-overlap of all pairs (NAP)
index [CP21].

NAP quanti�es effect magnitude in terms of pairwise rank comparisons of
outcomes under different treatment conditions, and is thus a useful metric for
outcomes that are not normally distributed and not on a ratio metric [PV09].

We examine two alternative approaches to meta-analysis of NAP:

transforming the effect size estimates
a binomial generalized linear mixed model.
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Non-overlap of all pairs
NAP is the proportion of all possible pairs of observations from a baseline phase
and an intervention phase where the outcome from the intervention constitutes a
therapeutic improvement over the outcome in baseline [PV09].

For an outcome where increase is bene�cial, the NAP parameter is

Unbiased estimator of :
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Sampling distribution of NAP
Sampling variance of NAP is known:

where  and .

Unbiased [Sen67; Mee90] and approximate [HM82] variance estimators have
been described.

Var(θ̂) = [1 + (nB − 1)ρ1 + (nA − 1)ρ2] ,
θ(1 − θ)

nAnB

ρ1 =
Cov(qst,qs′t)

θ(1−θ)
ρ2 =

Cov(qst,qst′)

θ(1−θ)
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NAP estimates from AAC interventions
[Gan+21] reported a synthesis of SCD studies on augmentative and alternative
communication interventions for school-age participants with autism spectrum
disorders.

Highly skewed distribution of NAP estimates
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Meta-analysis of NAP
NAP parameter is bounded between zero and one.

Distribution of the NAP estimator  is far from Gaussian and can be skewed.

We consider multi-level meta-analytic models that describe the distribution of
case-speci�c NAP parameters on the logistic scale:

where  is the overall average effect size (on the logistic scale),  is

a study-level random effect, and  is a case-level random effect.

θ̂

logit(θ) = μ + uk + vjk

μ uk ∼ N(0, τ 2)
vjk ∼ N(0, ω2)
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Strategy 1: Meta-analysis of transformed NAP
Conventional meta-analytic approach involves meta-analysis of a transformed
effect-size estimator:

where we assume that  and .

This requires truncating the NAP estimator as

Transformed effect size estimator can be biased.

Variance estimator might not work well with small sample size.

logit(
~
θ jk) = μ + uk + vjk + ejk,

E(ejk) = 0 Var(ejk) = Vjk/ [~
θ
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Strategy 2: Binomial generalized linear mixed model
An alternative is to approximate the distribution of  as a binomial with

probability  and  pseudo-trials,

This leads to a binomial-family generalized linear mixed model with a logistic link:

where

Binomial likelihood captures the skew of the sampling distribution, avoids having
to truncate .

But the pseudo-trials are estimated rather than known, could be estimated poorly
with small sample size.

θ̂ jk

θjk
~

Njk

~
Njk =

θjk(1 − θjk)

Vjk

nAjknBjkθ̂ jk  ∼  Binom (θjk,
~

Njk)

logit(θ) = μ + uk + vjk

θ̂ jk
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Simulation Design
Our simulation design generally followed [CP21].

 primary studies.

Average effect sizes corresponding to .

Between-study heterogeneity of .

Within-study heterogeneity of .

Cases per study  sampled from 

Phase lengths sampled from shifted Poisson distributions:

Outcome data either:

normally distributed with unit variance
Poisson-distributed

K = 10, 20, 30

θ = .05, .15, .25, . . . , .95

τ = 0.0, 0.1, 0.2, 0.3

ω = 0.00, 0.05, 0.10, 0.15

Jk {1, 2, 3, 4, 5}

nA ∼ 3 + Poisson(4), nB ∼ 3 + Poisson(4)
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Bias of overall average e�ect size estimator
Both strategies have systematically biased estimators for non-null .μ
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Bias of between-study heterogeneity estimator
Both strategies have systematically biased estimators for .τ 2
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Bias of within-study heterogeneity estimator
Both strategies have systematically biased estimators for .ω2
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Con�dence interval coverage
Neither strategy has properly calibrated con�dence intervals.

Mis-calibration tends to occur when  is more biased.

Coverage levels get worse with larger number of studies.

μ̂
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Expected coverage of study-level prediction intervals
Neither strategy has properly calibrated prediction intervals.

Expected coverage levels get worse with larger number of studies.
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Expected coverage of case-level prediction intervals
Neither strategy has properly calibrated prediction intervals.

Binomial GLMM intervals over-cover because of overestimation of .ω2
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Discussion
Two strategies investigated, involving different distributional approximations.

Logistic transformation relies on delta-method variance, approximate
normality of NAP estimator, requires truncation of extreme estimates.

Binomial GLMM avoid truncation but requires estimation of pseudo-trials 
 for each case.

Monte Carlo simulations under conditions typical of real single-case designs,
including relatively short phase lengths, small number of cases per study.

Neither approach worked adequately across the full parameter space.

Neither strategy is ready for use in practice.

Further investigation needed.

Can variance estimators or pseudo-trials be stabilized by pooling across
cases?

Correlation between effect size estimator and sampling variance estimator?

~
Njk
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