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The problem

¢ Available methods for meta-analysis of findings from single-case designs include:

o One-stage methods involving modeling of raw data from across multiple
studies.

o Two-stage methods involving calculation of effect sizes and subsequent
meta-analysis.

e The two-stage approach works well for some effect size measures, such as log
response ratios, but performs inadequately for the non-overlap of all pairs (NAP)
index [CP21].

e NAP quantifies effect magnitude in terms of pairwise rank comparisons of
outcomes under different treatment conditions, and is thus a useful metric for
outcomes that are not normally distributed and not on a ratio metric [P\VVO?].

e We examine two alternative approaches to meta-analysis of NAP:

o transforming the effect size estimates
o abinomial generalized linear mixed model.
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Non-overlap of all pairs

e NAP s the proportion of all possible pairs of observations from a baseline phase
and an intervention phase where the outcome from the intervention constitutes a
therapeutic improvement over the outcome in baseline [PV09].

e For an outcome where increase is beneficial, the NAP parameter is
1
0:Pr(YB>YA) +§Pr(YB:YA),

e Unbiased estimator of 6;

where
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Sampling distribution of NAP

e Sampling variance of NAP is known:

A (1 -0
Var (0) = g[l + (np —1)p1 + (na — 1)p2],
nang
Cov(gst,q4, Cov(gst, g
where p1 = —0(({1_;) ) and P2 = —0(({1_;) )

e Unbiased [Sen67; Mee90] and approximate [HM82] variance estimators have
been described.
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NAP estimates from AAC interventions

e [Gan+21] reported a synthesis of SCD studies on augmentative and alternative
communication interventions for school-age participants with autism spectrum

disorders.

¢ Highly skewed distribution of NAP estimates
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Meta-analysis of NAP

e NAP parameter is bounded between zero and one.

e Distribution of the NAP estimator é is far from Gaussian and can be skewed.

¢ We consider multi-level meta-analytic models that describe the distribution of
case-specific NAP parameters on the logistic scale:

logit(0) = p + ug, + vj

where p is the overall average effect size (on the logistic scale), uy, ~ N (0, 72) s
a study-level random effect, and v;;, ~ N (0, w?) is a case-level random effect.
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Strategy 1: Meta-analysis of transformed NAP

e Conventional meta-analytic approach involves meta-analysis of a transformed
effect-size estimator.

~

logit(0 1) = p + ur + vjx + €,
~2 ~
where we assume that E(ej;) = 0and Var(ej) = Vie/ |04(1 — 051)%|.

o This requires truncatingthe NAP estimator as

1 ~ 2 —1
,min {6, nARE

60 = max {
2nsnp 2nsnp

i

o Transformed effect size estimator can be biased.

o Variance estimator might not work well with small sample size.
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Strategy 2: Binomial generalized linear mixed model

An alternative is to approximate the distribution of éjk as a binomial with
probability 63 and Njk pseudo-trials,
~ 0:.(1 — 05
N J ( J )

Jjk —
Vik

¢ This leads to a binomial-family generalized linear mixed model with a logistic link:
n AjknBjké ik ~ Binom (0, N k)
where
logit(0) = p + ug, + vji

e Binomial Iikglihood captures the skew of the sampling distribution, avoids having
to truncate 6 ;.

e But the pseudo-trials are estimatedrather than known, could be estimated poorly
with small sample size.
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Simulation Design

e Our simulation design generally followed [CP21].
e K =10, 20,30 primary studies.
» Average effect sizes correspondingto 8 = .05, .15, .25, ...,.95.
e Between-study heterogeneity of 7 = 0.0, 0.1, 0.2, 0.3.
e Within-study heterogeneity of w = 0.00, 0.05, 0.10, 0.15.
e Cases per study Ji, sampled from {1,2,3,4,5}
¢ Phase lengths sampled from shifted Poisson distributions:
ny ~ 3 + Poisson(4), np ~ 3 4+ Poisson(4)
e QOutcome data either:

o normally distributed with unit variance
o Poisson-distributed
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Bias of overall average effect size estimator

e Both strategies have systematically biased estimators for non-null .
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Bias of between-study heterogeneity estimator

e Both strategies have systematically biased estimators for 72.
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Bias of within-study heterogeneity estimator

e Both strategies have systematically biased estimators for w?.
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Confidence interval coverage

e Neither strategy has properly calibrated confidence intervals.

o Mis-calibration tends to occur when [ is more biased.

o Coverage levels get worse with larger number of studies.
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Expected coverage of study-level prediction intervals

e Neither strategy has properly calibrated prediction intervals.

E(Cstudy)

o Expected coverage levels get worse with larger number of studies.
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Expected coverage of case-level prediction intervals

e Neither strategy has properly calibrated prediction intervals.

E(Ccase)

o Binomial GLMM intervals over-cover because of overestimation of w?.
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Discussion

Two strategies investigated, involving different distributional approximations.

o Logistic transformation relies on delta-method variance, approximate
normality of NAP estimator, requires truncation of extreme estimates.

o Binomial GLMM avoid truncation but requires estimation of pseudo-trials

~

N ji, for each case.

Monte Carlo simulations under conditions typical of real single-case designs,
including relatively short phase lengths, small number of cases per study.

Neither approach worked adequately across the full parameter space.

o Neither strategy is ready for use in practice.

Further investigation needed.

o Canvariance estimators or pseudo-trials be stabilized by pooling across
cases?

o Correlation between effect size estimator and sampling variance estimator?
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