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Robust variance estimation (RVE)

• Robust variance estimation (RVE) is a method for constructing 
asymptotically valid SEs, hypothesis tests, and CIs when the 
variance or dependence structure of a regression model is 
unknown or mis-specified.

• In meta-analysis/meta-regression, RVE is useful for:
• Univariate meta-analysis (Sidik & Jonkman, 2006), if sampling variances 

are inaccurate.

• Meta-regression with dependent effect sizes (Hedges, Tipton, & Johnson, 
2010), if correlations between effect size estimates are not available.
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RVE in large samples

• RVE standard errors are asymptotically valid, i.e.,  when the 
number of independent studies (m) is sufficiently large.
• But standard errors tend to be too small when m is small.

• For testing single meta-regression coefficients, the z-statistic 
(estimate / robust SE) is normally distributed if m is sufficiently 
large. 
• But z-test has inflated Type I error when m is small.

• For testing hypotheses involving multiple coefficients, a Wald 
statistic will follow a chi-squared distribution if m is sufficiently 
large.
• But Wald test has severely inflated Type-I error if m is not “large enough.”
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Example: Wilson, Lipsey, Tanner-
Smith, Huang, & Steinka-Fry (2011)

• Meta-analysis of dropout prevention/intervention programs
• Primary outcomes: school completion, school dropout

• m = 152 studies

• N = 385 effect size estimates

• Many studies provided effect size estimates for multiple outcome 
measures based on the same sample of participants.

• Original analysis used RVE (without small-sample correction)

• Meta-regression model including five categorical moderators.
• E.g., Study design: randomized experiment, matched, uncontrolled
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Small-sample adjustments

• Tipton (In Press) devised a small-sample correction for single-
coefficient tests, involving
• Adjustments to the RVE formula

• Estimated degrees-of-freedom based on a Satterthwaite approximation 

• Our work provides small-sample corrections for multiple-
contrast hypothesis tests.
• Tests of equality of several levels of a moderator variable

• Tests of overall model fit

5

Slides at http://bit.ly/1dIFaQe



Small-sample F-test

• Linear hypothesis with q contrasts: Cβ = c.

• We consider adjustments to the Wald statistic

where b is the vector of coefficient estimates and VR is the robust 
variance estimator.

• A two-part adjustment:
1. Following Tipton (In Press), adjust VR using the McCaffrey, Bell, & Botts

(2001) “bias reduced linearization” approach.
2. Approximate the distribution of Q using an F-distribution with estimated 

degrees-of-freedom.

• We investigated a wide variety of different degrees-of-freedom 
approximations.
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The Winner: AHZ

• Match mean and total variance of CVRCT to a Wishart
distribution with η degrees of freedom.

• Approximate the distribution of Q by Hotelling’s T2 distribution:

• In an extensive set of simulations, we found that AHZ:
- Nearly always had Type I error less than or equal to the nominal α

- More accurate than the other level-α corrections

- Tended to be conservative (Type I error < α) in small samples.
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Example: Wilson et al. (2011)
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χ2 test AHZ test

Moderator q Q p-val F d.f. p-val

Study design
(3 levels)

2 0.46 .796 0.22 43 .801

Outcome measure 
(4 levels)

3 2.74 .436 0.84 22 .489

Evaluator independence
(4 levels)

3 9.33 .029 2.78 17 .073

Implementation quality
(3 levels)

2 28.31 <.001 13.78 37 <.001

Program format
(4 levels)

3 11.54 .011 3.65 38 .021
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• Based on m = 152 studies, N = 385 effect sizes.

• Weights based on “hierarchical” model proposed by Hedges et al. (2010).



Conclusions and future work

• Small-sample corrections should always be used in practice. 
• The performance of the large-sample test depends on features of the 

covariates (e.g., balance, leverage), not just sample size.

• Consequently, it is hard to say what constitutes a “large enough” sample.

• Single- and multiple-contrast hypothesis tests implemented in R 
package clubSandwich
• Works with metafor (Viechtbauer, 2010) and robumeta (Fisher & Tipton, 

2015) 

• Currently available on Github (https://github.com/jepusto/clubSandwich)

• Interested in helping us implement in Stata?
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Questions?
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• Working paper available upon request

• Ask about our simulation results!

James E. Pustejovsky – pusto@austin.utexas.edu

Elizabeth Tipton – tipton@tc.columbia.edu
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Simulated Type-I error
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χ2 test AHZ test

Moderator q m = 32 m = 152 m = 32 m = 152

Study design
(3 levels)

2 .278 .145 .073 .075

Outcome measure 
(4 levels)

3 .261 .155 .023 .046

Evaluator independence
(4 levels)

3 .396 .175 .012 .051

Implementation quality
(3 levels)

2 .248 .142 .048 .065

Program format
(4 levels)

3 .383 .179 .044 .074
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• Simulations based on design matrix of Wilson et al. (2011).

• m = 32 is the subset of 32 studies that report 3 or more effect sizes.

• Weights based on “hierarchical” model proposed by Hedges et al. (2010).

• 5000 replications.



Simulated Type-I error of χ2 test
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Simulated Type-I error of χ2 test with 
bias-reduced linearization adjustment
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Simulated Type-I error of AHZ test
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Simulated Type-I error of EDT test
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Bias-reduced linearization estimator
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• McCaffrey, Bell, & Botts (2001) proposed a correction to VR

based on a working model for the error covariance structure.

• Suppose that weights are chosen to be inverse-variance under 
the working model. Then 

• The corrected RVE is

where the adjustment matrices A1,…,Am are chosen so that 
E(VR) = M when the working model is correct.

 

1

1

Var .
m

T

j j j

j





 
  
 
b X W X M

1

m
R T T T

j j j j j j j j

j

 
  

 
V M X W A e e A W X M


