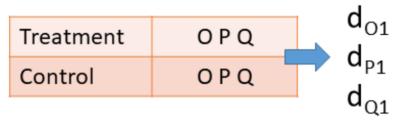
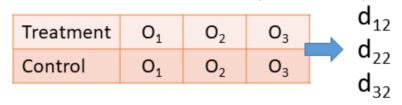


A matter of emphasis: Comparison of working models for meta-analysis of dependent effect sizes

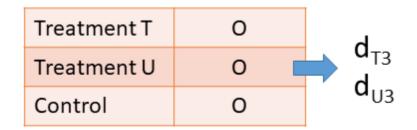
James E. Pustejovsky

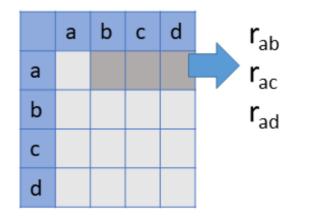

Society for Research Synthesis Methodology

July 20, 2022, Portland, OR / Online

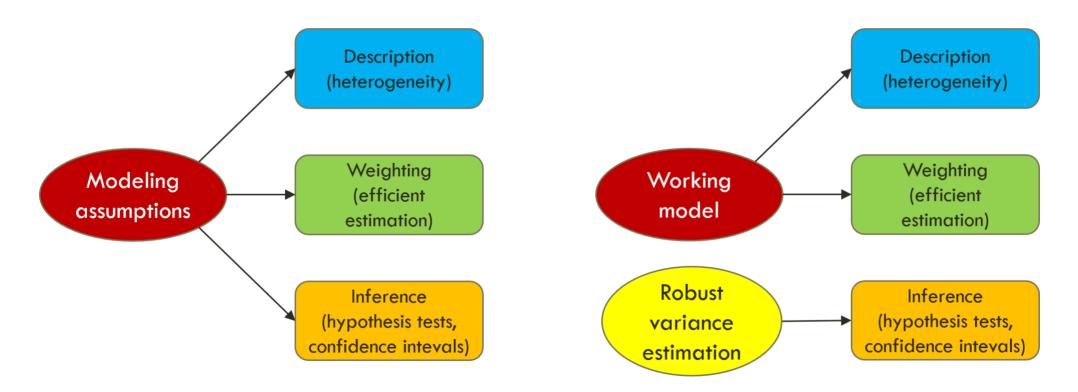


Dependent effect size estimates


Multiple outcomes measured on a common set of participants


Outcomes measured at multiple follow-up times

Multiple treatment conditions compared to a common control


Multiple correlations from a common sample

From modeling assumptions to working models

Conventional approach

Robust variance estimation

Many available working models

- Correlated Effects model (Hedges, Tipton, & Johnson, 2010) implemented in robumeta
- Hierarchical Effects model (Hedges, Tipton, & Johnson, 2010) implemented in robumeta
- Multi-level meta-analysis (MLMA) as a working model (Van den Noortgate et al., 2013, 2015; Fernandez-Castilla et al., 2020)
- **Correlated-and-Hierarchical Effects** working model (Pustejovsky & Tipton, 2020)
- Independent effects (i.e., a basic random effects model)

Which working model(s) should be used in practice?

How much does this choice matter?

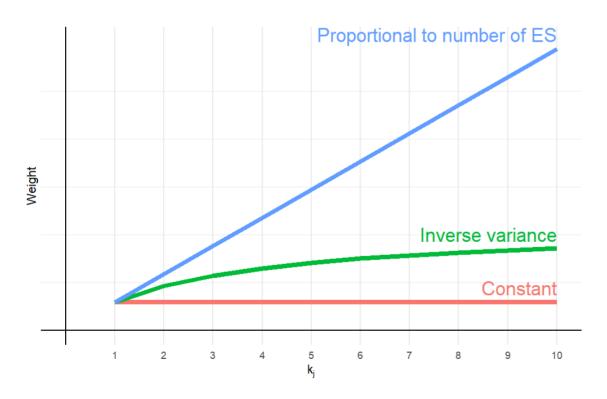
Why might results based on different working models differ?

Meta-regression with study-level covariates

- Meta-analysis with J studies
- Study j includes k_j effect size estimates
- Effect size estimate T_{ij} , sampling standard error σ_j
- Study-level predictors \mathbf{x}_j
- Meta-regression model:

$$T_{ij} = \mathbf{x}_j \boldsymbol{\beta} + \epsilon_{ij}$$

- Different working models make different assumptions about ϵ_{ij} 's.
 - $\circ au^2$ between-study variance
 - $\circ \omega^2$ within-study variance
 - $\circ \
 ho$ assumed sampling correlation between effect size estimates


• An equivalent study-level regression:

$${ar T}_j = {f x}_j {m eta} + ar \epsilon_j$$

where different working models assign different weights to each study.

A matter of emphasis

• Working models differ in how weight is allocated to studies with different k_j 's.

• Results from different working models will differ only if $E\left(\bar{T}_{j}|k_{j},\mathbf{x}_{j}\right)$ depends on k_{j} .

Approximate working weights

• Independent effects $\circ w_j$ proportional to k_j

$$w_j pprox rac{k_j}{ au^2 + \omega^2 + \sigma_j^2}$$

Hierarchical effects (robumeta)

 w_j proportional to k_j

$$w_j pprox rac{k_j}{ au^2 +
ho imes g + \omega^2 + \sigma_j^2} \qquad (g ext{ small})$$

$$w_j pprox rac{1}{ au^2 + \omega^2 f + \sigma_j^2} \qquad (f>1)$$

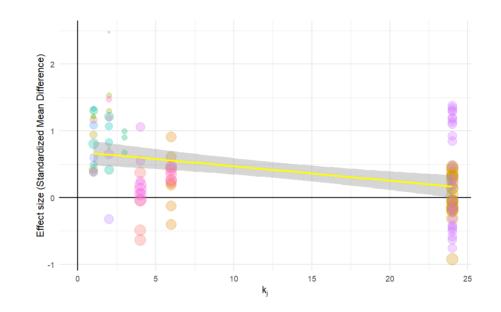
Correlated-and-hierarchical effects:
 Inverse-variance w_i

$$w_j pprox rac{k_j}{k_j au^2 + (k_j-1)
ho \sigma_j^2 + \omega^2 + \sigma_j^2}$$

- Multi-level meta-analysis:
 - Nearly inverse-variance w_j

$$w_j pprox rac{k_j}{k_j(au^2+h)+(\omega^2-h)+\sigma_j^2}$$

Action video game effects on cognitive performance


- Bediou and colleagues (2018) reported a synthesis of experimental studies examining the effects of playing action video games on cognitive performance.
- 26 studies, 99 standardized mean difference effect size estimates
 - k_j ranging from 1 to 24, median = 2.
- Sensitivity analysis across working models:

Model	Est (SE)	95% CI	$ au^2$	ω^2	$ au^2+\omega^2$
Independent Effects	0.33 (0.11)	[0.07, 0.60]	-	-	0.17
Hierarchical Effects	0.33 (0.11)	[0.07, 0.60]	0.05	0.13	0.18
Correlated Effects	0.62 (0.09)	[0.43, 0.82]	0.13	-	0.13
Correlated + Hierarchical Effects	0.51 (0.10)	[0.30, 0.72]	0.01	0.22	0.23
Multi-Level Meta-Analysis	0.55 (0.10)	[0.34, 0.76]	0.11	0.10	0.21

Weight allocation by working model

Effect sizes are correlated with k_j

Some tentative implications

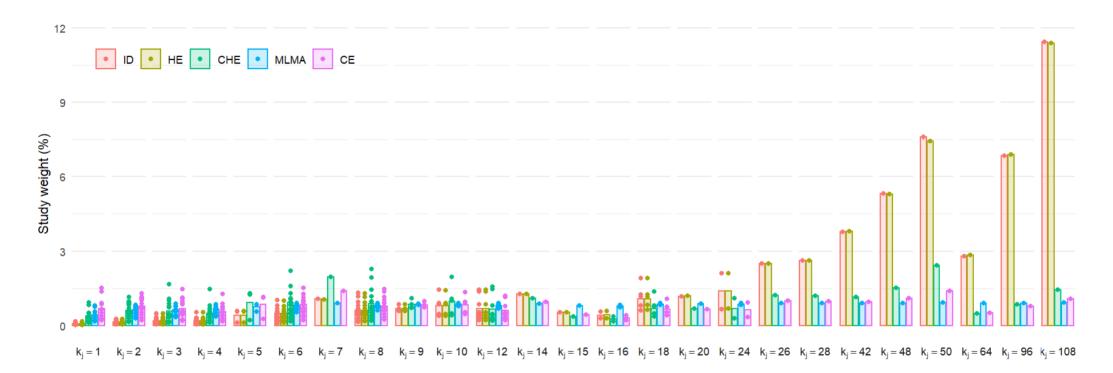
For meta-regression with study-level covariates...

- Working model sensitivity arises when a) k_j 's vary and b) effect sizes are correlated with k_j 's.
 - Report distribution of k_j 's!
 - $\circ~$ Perhaps better to assess $\mathrm{E}\left(ar{T}_{j}|k_{j},\mathbf{x}_{j}
 ight)$ directly?
 - Consider reasons that $E(\bar{T}_j)$ varies with k_j (selective reporting? overly lenient inclusion criteria?).
- The original correlated effects and hierarchical effects working models entail extreme, polar opposite weighting schemes.
 - Using either as primary working model warrants careful justification.
- We need to pay more attention to within-study heterogeneity of effects.

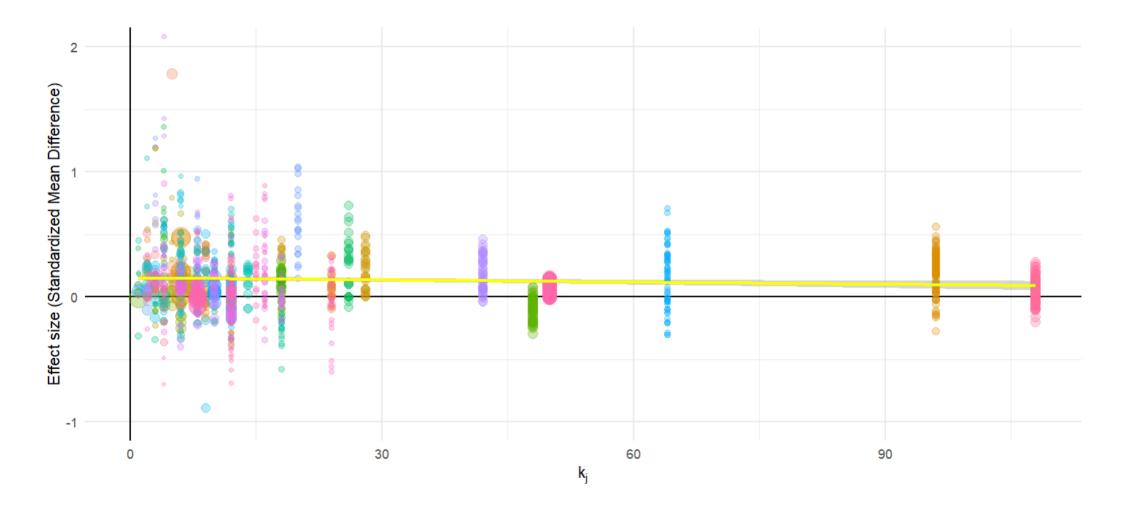
Thanks

pustejovsky@wisc.edu

https://jepusto.com



Effects of Brief Alcohol Interventions


- Tanner-Smith and Lipsey (2015) reported a synthesis of experimental studies examining the effects of brief alcohol interventions to reduce alcohol consumption in adolescents and young adults.
- 137 studies, 1333 standardized mean difference effect size estimates
 - k_j ranging from 1 to 108, median = 6.
- Sensitivity analysis across working models:

Model	Est (SE)	95% CI	$ au^2$	ω^2	$ au^2+\omega^2$
Independent Effects	0.11 (0.02)	[0.07, 0.15]	-	-	0.02
Hierarchical Effects	0.11 (0.02)	[0.07, 0.15]	0.02	0.00	0.02
Correlated Effects	0.13 (0.02)	[0.10, 0.16]	0.03	-	0.03
Correlated + Hierarchical Effects	0.12 (0.02)	[0.09, 0.15]	0.01	0.02	0.02
Multi-Level Meta-Analysis	0.15 (0.02)	[0.11, 0.19]	0.04	0.00	0.04

Weight allocation by working model

Effect sizes are *not* correlated with k_j

Working model weights (estimated)

• Independent effects

$$w_j = rac{k_j}{ec{\omega}^2 + \sigma_j^2}$$

• Hierarchical effects (robumeta)

$$w_j = rac{k_j}{\ddot{ au}^2 + \ddot{\omega}^2 + \sigma_j^2}$$

• Correlated effects (robumeta)

$$w_j = rac{1}{\dot{ au}^2 + \sigma_j^2}$$

• Correlated-and-hierarchical effects:

$$w_j = rac{k_j}{k_j \hat{ au}^2 + k_j
ho \sigma_j^2 + \hat{\omega}^2 + (1-
ho) \sigma_j^2}$$

• Multi-level meta-analysis:

$$w_j = rac{k_j}{k_j ilde{ au}^2 + ilde{\omega}^2 + \sigma_j^2}$$
 15/15