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Positionality

• Trained as statistician.

• Interested in single-case methodology as a toolset for investigating 

research contexts where other methodologies are infeasible or 

unsuitable.

• Scholarship focuses on meta-analysis methods, social science 

applications.

• No experience as interventionist or primary researcher.
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Overview

• Premises of synthesis

• Currently available tools for single-case synthesis

• Theoretical possibilities and directions
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PREMISES
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Research synthesis for informing 

evidenced-based practice

• SCED can provide evidence about 

intervention effects for individual 

participants.

• But single SCEDs provided limited basis for 

generalization to other participants or 

contexts.

• Combining evidence from multiple studies 

can provide a firmer basis for 

generalization about effects of 

intervention. 
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Synthesis of SCEDs
 Summarize magnitude of 

intervention effects.

 Characterize variation in 

effect magnitude.

 Identify systematic 

predictors of 

effectiveness.
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Roadblocks for analysis of SCED data
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CURRENT TOOLS
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Three broad approaches to synthesis

1. Meta-analysis of study-level summary effect sizes 

(design-comparable standardized mean differences)

2. Meta-analysis of case-level effect sizes

3. Raw data synthesis
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Synthesizing single-case research
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Study types?

Design-

comparable SMD

Outcome 

types?

SCEDs + group designs SCEDs exclusively

Case-level 

effect sizes

Raw data 

synthesis

Varied/heterogeneous DVs Common/equatable DVs



Study-level summary effect sizes

• Between-case standardized mean difference (a.k.a. 

design-comparable effect size)

• Single-number summary of average intervention effect.
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Study-level summary effect sizes

• Goal: Provide a summary effect size in a metric that is 
theoretically comparable to ES from a between-group 
design. 
• Can then use conventional meta-analysis methods for synthesis.

• Roadwork completed:
 Models account for autocorrelation

 Can model time trends

• scdhlm web-app and R package
(https://www.jepusto.com/software/scdhlm/)
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Study-level summary effect sizes

• Current limitations: 
• Only one available metric (SMD), based on models with 

normally distributed errors.

• Requires designs with 3+ participants in order to estimate 
between-person variation in outcome (for scale).

• Limited available designs:

• Across-participant multiple baseline/multiple probe.

• Replicated treatment reversals (ABAB).

• Chen and colleagues propose extensions for BC-SMD to:
• Multiple baselines across behaviors, replicated across participants.

• Clustered multiple baseline designs.

• Multivariate across-participant multiple baseline designs.
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Chen, Pustejovsky, Klingbeil, & Van Norman (2022). Between-case standardized mean differences: Flexible methods for single-

case designs. https://psyarxiv.com/3pk5q/
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Case-level effect sizes

• Single-number summary of intervention effect for each 

case.
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Case-level effect sizes

• Goal: Compare results across participants and SCED 

studies that use various outcome measures.

• Examine heterogeneity of effects within and between studies.

• Examine individual-level predictors of effects.

• Many available ES metrics, some appropriate for non-

normal outcome distributions.

• But most available metrics only describe level change.

• SingleCaseES web-app and R package
(https://www.jepusto.com/software/SingleCaseES/)

17

https://www.jepusto.com/software/SingleCaseES/


Meta-analysis of case-level 

effect sizes
• Because of short data series, strategy for meta-analysis 

depends on the effect size metric (Chen & Pusto, In Press).
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Chen, M., & Pustejovsky, J. E. (In Press). Multi-level meta-analysis of single-case experimental designs using robust variance 

estimation. Psychological Methods, forthcoming. https://psyarxiv.com/59h32/

Metric Strategy Non-normal 

outcomes

Auto-

correlation

Time trends

Log response 

ratio

Multi-level meta-

analysis

Within-case SMD Simple average

Non-overlap of 

All Pairs

Simple average

Tau(AB) Simple average

https://psyarxiv.com/59h32/


Raw data synthesis

• Combine the raw data from multiple 

participants & studies.

• This requires common DVs or DVs that 

can be meaningfully equated.

• Fit a multi-level model to the entire 

dataset (Van den Noortgate & 

Onghena, 2008; Moeyaert et al., 

2013, 2014).
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• Moeyaert, M., Ugille, M., Ferron, J. M., Beretvas, S. N., & Van den 
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• Van den Noortgate, W., & Onghena, P. (2008). A multilevel meta-analysis 

of single-subject experimental design studies. Evidence-Based Communication 

Assessment and Intervention, 2(3), 142–151. 
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Raw data synthesis

• Goal: Develop a model that describes the distribution of 
outcomes (and effects) across studies, cases, & phases.
• Examine heterogeneity of effects within and between studies.

• Examine individual-level predictors of effects.

• Examine temporal variation in effects.

• Roadwork completed:
 Models can account for autocorrelation

 Can develop models with time trends

 Can handle short data series

• MultiSCED web-app
(https://ppw.kuleuven.be/single-case)
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Raw data synthesis: Assumptions

• Features of baseline data series (levels, slopes, 

variability) are similar across cases and studies.

• Timing of intervention start/end is unrelated to 

outcome pattern (levels, slopes, variability).
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Raw data synthesis

• Current limitations: 

• Available methods limited to raw mean difference or within-

case SMD metrics.

• Available models are mostly based on normally distributed 

errors

• Declercq and colleagues (2020) investigate models for 

count outcomes.

22

Declercq, L., Jamshidi, L., Fernández-Castilla, B., Beretvas, S. N., Moeyaert, M., Ferron, J. M., & Van den Noortgate, W. (2019). 
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Methods, 51(6), 2477-2497. https://doi.org/10.3758/s13428-018-1091-y
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THEORETICAL POSSIBILITIES 

AND DIRECTIONS
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Three broad approaches to synthesis
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Goal/level of 

analysis

ES metrics Assumptions

Study-level 

summary effect

sizes

Study BC-SMD Hierarchical

model of each 

study

Case-level effect 

sizes

Case Many Case-specific

Raw data 

synthesis

Time-point Raw mean 

difference, 

within-case SMD

Hierarchical 

model across

studies

Level of analysis, ES metric, and assumptions are theoretically distinct 

and (possibly) orthogonal dimensions.



Theoretical possibilities
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ES metric Study-level analysis Case-level analysis Time-point-level 

analysis

Raw mean difference

Standardized mean 

difference (within)

Standardized mean 

difference (between)

Response ratio

Odds ratio

…

ES metric Study-level analysis Case-level analysis Time-point-level 

analysis

Raw mean difference

Standardized mean 

difference (within)

Standardized mean 

difference (between)

Response ratio

Odds ratio

…

ES metric Study-level analysis Case-level analysis Time-point-level 

analysis

Raw mean difference

Standardized mean 

difference (within)

Standardized mean 

difference (between)

Response ratio

Odds ratio

…

ES metric Study-level analysis Case-level analysis Time-point-level 

analysis

Raw mean difference X X

Standardized mean 

difference (within)
X X

Standardized mean 

difference (between)
X

Response ratio X

Odds ratio X

Non-overlap X

…



Level of analysis

• Level of analysis should be determined by research 

aims/research questions.

• What sources of variation are of interest?

• Higher level of analysis is more reductive, but also 

simpler to explain.
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Effect size metric choice

• ES metric needs to be meaningful and interpretable for 

the set of interventions and dependent variables 

identified for synthesis.

• Dependent variable and form of intervention effect 

should be primary considerations.
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Assumptions

• Currently, little recognition of the connection between 
study procedures and statistical/meta-analytic modeling 
assumptions.
• How do response-guided design practices affect assumptions (Joo

et al., 2018; Swan et al., 2020)?

• Both substantive SCED researchers and methodologists 
need to work on clarifying and scrutinizing our 
assumptions.

• Need better tools for investigating model fit, building 
confidence in statistical summaries of SCED research. 
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on treatment effect estimates. Research in Developmental Disabilities, 79, 77–87. https://doi.org/10.1016/j.ridd.2017.12.018
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Which combinations are needed?

29

ES metric Study-level analysis Case-level analysis Time-point-level 

analysis

Raw mean difference

Standardized mean 

difference (within)

Standardized mean 

difference (between)

Response ratio

Odds ratio

…

ES metric Study-level analysis Case-level analysis Time-point-level 

analysis

Raw mean difference

Standardized mean 

difference (within)

Standardized mean 

difference (between)

Response ratio

Odds ratio

…

ES metric Study-level analysis Case-level analysis Time-point-level 

analysis

Raw mean difference

Standardized mean 

difference (within)

Standardized mean 

difference (between)

Response ratio

Odds ratio

…

ES metric Study-level analysis Case-level analysis Time-point-level 

analysis

Raw mean difference X X

Standardized mean 

difference (within)
X X

Standardized mean 

difference (between)
X

Response ratio X

Odds ratio X

Non-overlap X

…
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Illustrative use case for BC-SMD

• Calder and colleagues (2020, 2021) studied an explicit 
grammar instruction intervention for children with 
developmental language disorder.

• 2020: multiple baseline across nine participants
• Summary effect sizes after 9 weekly intervention sessions.

• 𝑑 = 1.45, 𝑆𝐸 = 0.54 for expressive morphosyntax.

• 𝑑 = −0.04, 𝑆𝐸 = 0.54 for grammaticality judgements.

• 2021: crossover randomized trial
• N = 21 participants

• 𝑑 = 1.97, 𝑆𝐸 = 0.11 for expressive morphosyntax.

• 𝑑 = 0.06, 𝑆𝐸 = 0.06 for grammaticality judgements.
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