Selective outcome reporting in meta-analysis of dependent effect size estimates

James E. Pustejovsky

University of Wisconsin - Madison

Stanford Quantitative Sciences Unit

February 8, 2022

Outline

- Selective reporting in meta-analysis
- Dependent effect sizes
- A generalized excess significance test

Selective reporting in meta-analysis

Dependent effect sizes

A generalized excess significance test

34

Selective reporting of primary study findings

- Selective reporting occurs if "affirmative" ("positive") findings are more likely to be reported and available for inclusion in meta-analysis.
 - Bias in the publication process (journal/editor/reviewer incentives).
 - Strategic decisions by authors.
- Strong concerns about selective reporting across social, behavioral, and health sciences.
 - Registries of medical trials (Chan et al., 2004; Turner et al., 2008) and social science survey experiments (Franco et al., 2014).
 - Surveys of social science researchers (John, Loewenstein, & Prelec, 2012; Fiedler & Schwarz, 2016).
 - Systematic reviews of dissertations (Pigott et al., 2013; O'Boyle, Banks, & Gonzalez-Mule, 2016; Cairo et al., 2020)
- For a given meta-analysis, we expect strength of selection to depend on
 - Rigor of the systematic review search process.
 - Whether effect sizes are from focal or ancillary analysis.

Implications of selective reporting for meta-analysis

- Selective reporting **distorts the evidence base** available for systematic review/meta-analysis.
 - Inflates average effect size estimates from meta-analyses.
 - Biases estimates of heterogeneity (Augusteijn et al., 2019).

- When conducting a meta-analysis, we need to investigate:
 - Whether selective reporting is of concern (*detecting* selective reporting)
 - Extent of biases arising from selective reporting (*correcting* for selective reporting)

Tools for investigating selective reporting

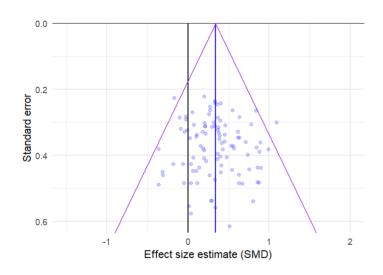
- Graphical diagnostics
 - Funnel plots
 - Contour-enhanced funnel plots
 - Power-enhanced funnel plots (sunset plots)

- Tests/adjustments for funnel plot asymmetry
 - Trim-and-fill
 - Egger's regression
 - PET/PEESE
 - Kinked meta-regression
- Selection models
 - Weight-function models
 - Copas models
 - Sensitivity analysis
- p-value diagnostics
 - Test of Excess Significance
 - *p*-curve
 - $\circ p$ -uniform / p-uniform*

Funnel plots

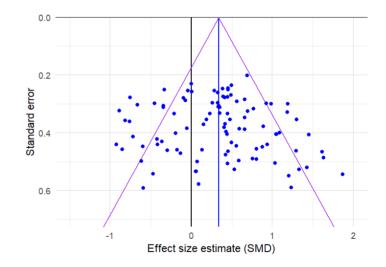
Constant effect

• A funnel-plot is a scatter plot of effect size estimates versus a measure of study precision (e.g., standard error).



• Effect size estimates will mostly fall within the funnel of $\hat{\mu} \pm 1.96SE$

Random effects



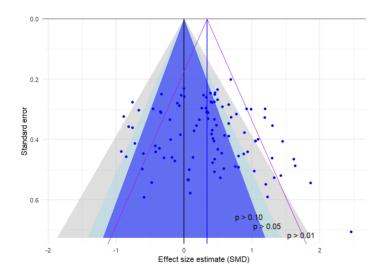
• Estimates outside the funnel indicate heterogeneity

Contour-enhanced funnel plots

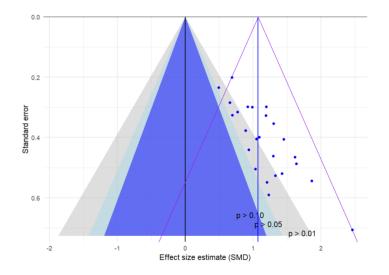
• Contour-enhanced funnel plots add shading to indicate regions where effect size estimates are statistically significant.

Selective reporting creates asymmetry

Non-selected data

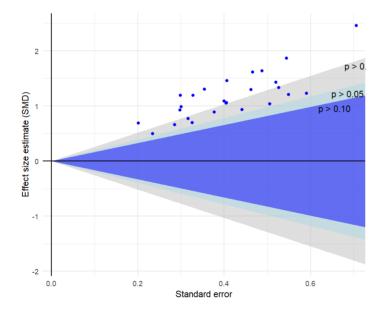


Affirmative effects only



Asymmetry tests/adjustments

- Egger's regression / PET / PEESE, rank correlation test
- Infer selective reporting from the presence of asymmetry.



Selection models

- Big literature
 - Iyengar & Greenhouse (1988)
 - Hedges & Vevea (1995)
 - Copas & Shi (2001)
- Infer selective reporting based on the *shape of the effect size distribution*.
- Can accomodate moderators.
- But existing methods assume 1 effect size estimate per study.
 - Does not accomodate dependent effects.

• But asymmetry can have other causes!

Selective reporting in meta-analysis

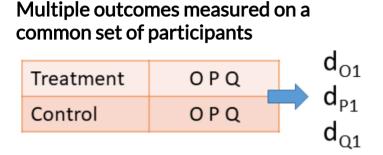
3

C

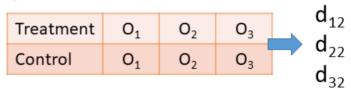
Dependent effect sizes

A generalized excess significance test

Dependent effect size estimates



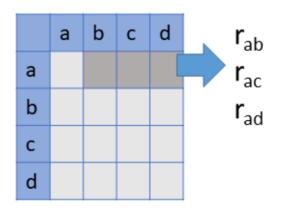
Outcomes measured at multiple followup times



Multiple treatment conditions compared to a common control

Treatment T	0	d
Treatment U	0	d_{T3} d_{U3}
Control	0	

Multiple correlations from a common sample



Dependent effect sizes are prevalent

- Tanner-Smith & Lipsey (2015). Brief alcohol interventions for adolescents and young adults: A systematic review and meta-analysis.
 - 185 studies, 1446 effect size estimates
 - 1-108 effect size estimates per study (median = 6, IQR = 3-12)
 - Multiple outcome measures, multiple follow-up times, multiple treatment conditions, multiple comparison groups
- Lehtonen et al. (2018). Is bilingualism associated with enhanced executive functioning in adults?
 - 152 studies, 891 effect size estimates
 - 1-40 effect size estimates per study (median = 4)
- Bediou et al. (2018). Meta-Analysis of Action Video Game Impact on Perceptual, Attentional, and Cognitive Skills.
 - 70 cross-sectional studies, 88 samples, 194 effect size estimates
 - 1-28 effect size estimates per study (median = 2)

Limited tools for investigating selective reporting with dependent effect sizes

- Ad hoc modifications to the data
 - Aggregate effect sizes to remove dependence
 - Conduct analysis within sub-groups
- Robust Egger's regression test (Rodgers and Pustejovsky, 2020):

$$T_{ij}=eta_0+eta_1(SE)_{ij}+\epsilon_{ij}$$

- Meta-regression of effect size on a measure of precision (such as standard error).
- Use robust variance estimation (clustering by sample) to account for effect size dependency.
- Limited power except when there is very strong selective reporting.
- Asymmetric funnel plots are suggestive but ambiguous.

Selective reporting in meta-analysis

3

Dependent effect sizes

A generalized excess significance test

An exploratory test of excess significance (TES)

- **Ioannidis and Trikalinos (2007)** proposed an intuitive diagnostic for selective reporting based on **statistical significance at level** α .
 - k: Total number of effect sizes (assuming one ES per sample)
 - *O*: observed number of statistically significant effect sizes
 - P_j : Estimated power of study j, assuming a common effect model or random effects model.
 - $\circ ~ E = \sum_{j=1}^k P_j$: expected number of statistically significant effect sizes
- A binomial approximation for O in the absence of selective reporting:

$$O \doteq Binom(k, E/k) \qquad ext{or} \qquad rac{O-E}{\sqrt{E(k-E)/k}} \doteq N(0,1)$$

• Excess of statistically significant effect sizes indicates selective reporting.

Problems with TES

- Binomial approximation isn't correct (because P_i are usually heterogeneous).
- Does not account for uncertainty in power estimates.
- Requires independent effect sizes.
- Many different, somewhat arbitrary ways of estimating power.
 - Creates analytic flexibility in how TES is applied.

Goal: Generalize TES

- Account for uncertainty in power estimates
- Allow for dependent effect sizes
- Allow for systematic predictors / covariates
- Proper null distribution

A meta-regression model

$$\mathbf{T}_j = \mathbf{X}_j \boldsymbol{\beta} + \mathbf{u}_j + \mathbf{e}_j$$

- \mathbf{T}_j : set of effect size estimates for sample j
- \mathbf{X}_j : covariate matrix for sample j
- β : Meta-regression coefficients
- $\boldsymbol{\theta}$: parameters describing random effects \mathbf{u}_{j} .
- \mathbf{W}_{j} : Weighting matrix for estimating meta-regression

Estimation

- heta estimated by full/restricted maximum likelihood estimation or method of moments.
- β estimated by weighted least squares.

TES as estimating equations

• Meta-regression estimating equations:

$$egin{aligned} \mathbf{S}_{oldsymbol{eta}} &= \sum_{j=1}^k \mathbf{X}_j' \mathbf{W}_j \left(\mathbf{T}_j - \mathbf{X}_j oldsymbol{eta}
ight) \ \mathbf{S}_{oldsymbol{ heta}} &= rac{\partial l_R(oldsymbol{eta},oldsymbol{ heta})}{\partial oldsymbol{ heta}} \end{aligned}$$

• An additional estimating equation:

$$S_{\pi} = \sum_{j=1}^k ig[O_j - E_j(oldsymbol{eta},oldsymbol{ heta}) ig]$$

where

- $\circ~O_j$: number of statistically significant effect sizes from study j
- E_j : expected number of statistically significant effect sizes, given the model parameters β and θ
- In the absence of publication bias, $\mathbb{E}\left(S_{\pi}
 ight)=0.$

Generalized excess significance test

• A cluster-robust score test statistic (Rotnizky & Jewell, 1990):

$$Z^{GEST} = rac{{\hat S}_\pi}{{\sqrt {V^{CR}}}}$$

where V^{CR} is a cluster-robust estimate of $\mathbb{V}ar(S_{\pi})$, accounting for estimation of β and θ .

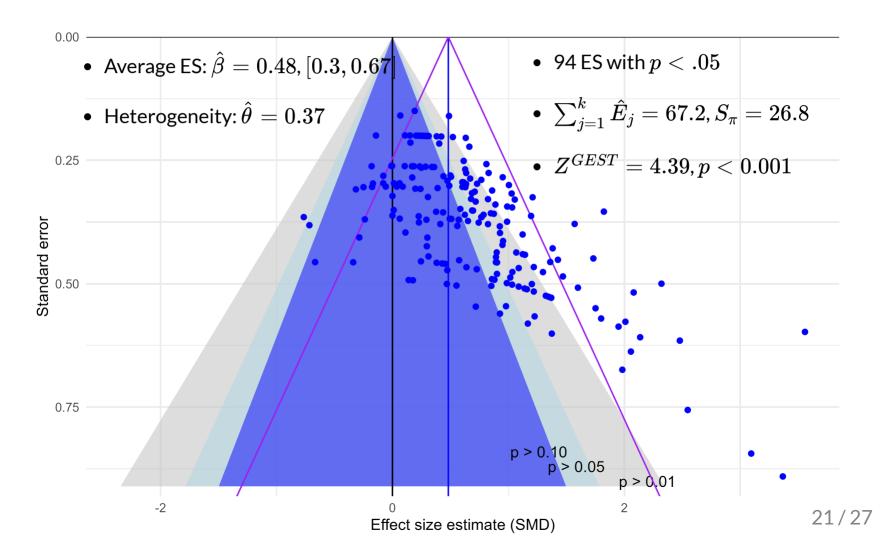
• Large-sample approximation (for large-enough k):

$$Z^{GEST} \sim N(0,1)$$

in the absence of selective reporting.

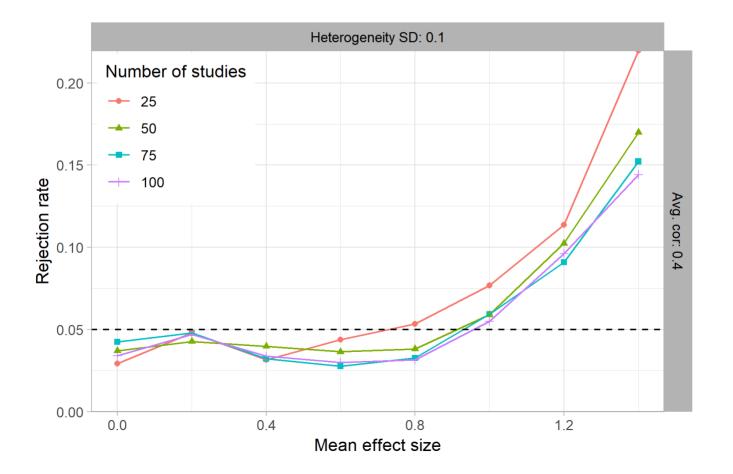
• Selective reporting indicated if $Z^{GEST} > \Phi^{-1}(1-\alpha)$.

Bediou et al. (2018). Meta-Analysis of Action Video Game Impact on Perceptual, Attentional, and Cognitive Skills.



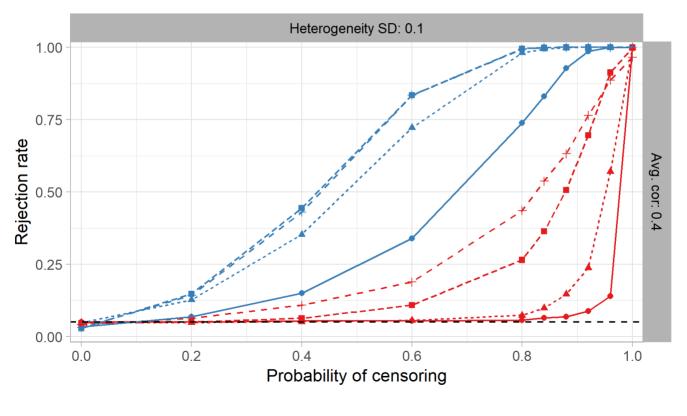
Simulations: Type I error rates

(Correlated standardized mean differences)



Simulations: Power comparison

k = 50



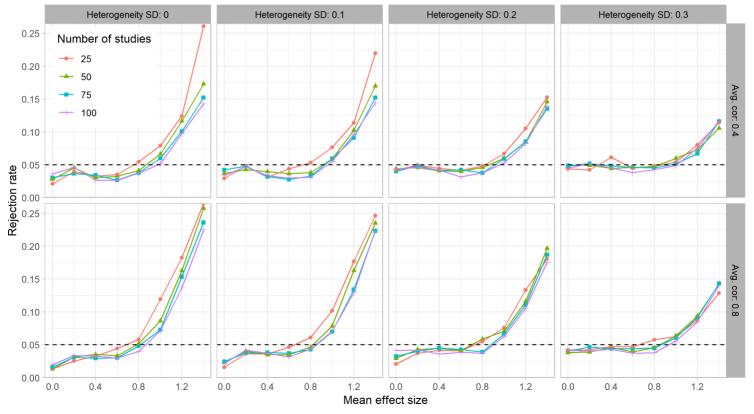
Mean effect size - 0 - - 0.2 - - 0.4 - + 0.6 Test - Egger sandwich - GES

Discussion

- GEST requires consistent estimation of mean and variance of the effect size distribution *in the absence of selection*.
 - Can accommodate meta-regression models.
 - Can use weighting schemes that are not inverse-variance.
- Type I error rates are inflated when average effects are large and homogeneous.
 - Small sample refinements still under investigation (cluster wild bootstrap?).
- GEST estimates expected power *marginally* for each effect size.
 - Does not consider the joint pattern of statistical significance.
- Outstanding need for models that
 - capture both selective outcome reporting and study-level selection.
 - accommodate pre-registered studies, known to be fully reported.
 - *estimate* strength of selection rather than using an assumption.

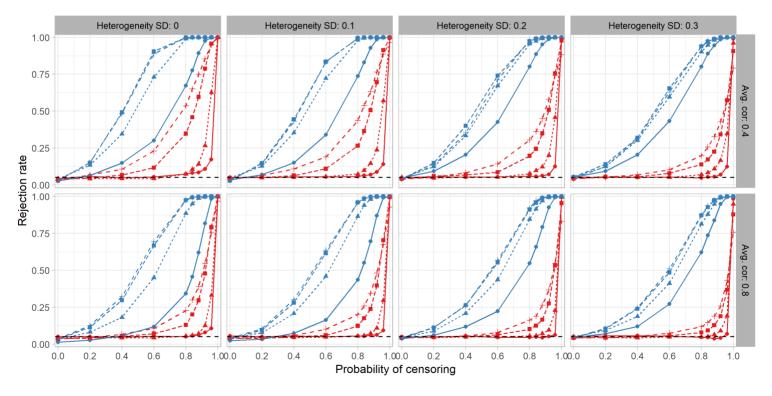
Simulations: Type I error rates

(Correlated standardized mean differences)



Simulations: Power comparison

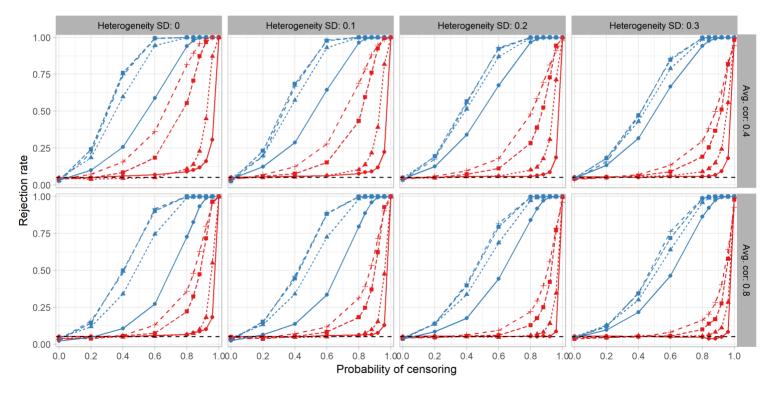
k = 50



Mean effect size - 0 - 0.2 - 0.4 - 0.6 Test - Egger sandwich - GEST

Simulations: Power comparison

k = 100



Mean effect size - 0 - 0.2 - 0.4 - 0.6 Test - Egger sandwich - GEST