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Selective reporting of primary study findings

¢ Selective reporting occurs if "affirmative" ("positive") findings are more likely to
be reported and available for inclusion in meta-analysis.

o Bias in the publication process (journal/editor/reviewer incentives).
o Strategic decisions by authors.

e Strong concerns about selective reporting across social, behavioral, and health
sciences.

o Registries of medical trials (Chan et al., 2004; Turner et al., 2008) and social
science survey experiments (Franco et al., 2014).

o Surveys of social science researchers (John, Loewenstein, & Prelec, 2012;
Fiedler & Schwarz, 2016).

o Systematic reviews of dissertations (Pigott et al., 2013; O'Boyle, Banks, &
Gonzalez-Mule, 2016; Cairo et al., 2020)

e For agiven meta-analysis, we expect strength of selection to depend on
o Rigor of the systematic review search process.

o Whether effect sizes are from focal or ancillary analysis.
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Implications of selective reporting for meta-analysis

e Selective reporting distorts the
evidence base available for
systematic review/meta-analysis.

o [Inflates average effect size
estimates from meta-analyses.

o Biases estimates of
heterogeneity (Augusteijn et
al., 2019).

¢ When conducting a meta-analysis, we need to investigate:
o Whether selective reporting is of concern (detecting selective reporting)
o Extent of biases arising from selective reporting (correcting for selective

reporting)
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Tools for investigating selective reporting

¢ Graphical diagnostics o Tests/adjustments for funnel plot

asymmetry
o Funnel plots

o Contour-enhanced funnel o Trim-and-fill
plots o Egger'sregression
o Power-enhanced funnel plots o PET/PEESE
(sunset plots) o Kinked meta-regression

e Selection models

o Weight-function models
o Copas models
o Sensitivity analysis

e p-value diagnostics

o Test of Excess Significance
o p-curve

o p-uniform/ p-uniform®
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Funnel plots

e Afunnel-plotis a scatter plot of effect size estimates versus a measure of study
precision (e.g., standard error).
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Contour-enhanced funnel plots

e Contour-enhanced funnel plots add shading to indicate regions where effect size
estimates are statistically significant.
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Selective reporting creates asymmetry

Non-selected data Affirmative effects only
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Asymmetry tests/adjustments
e Egger'sregression/PET / PEESE,
rank correlation test

¢ Infer selective reporting from the
presence of asymmetry.

p>0.

Effect size estimate (SMD)

0.0 0.2 0.4 06
Standard error

e But asymmetry can have other
causes!

Selection models

Big literature

o lyengar & Greenhouse (1988)
o Hedges & Vevea (1995)
o Copas & Shi (2001)

Infer selective reporting based on
the shape of the effect size
distribution.

Can accomodate moderators.

But existing methods assume 1
effect size estimate per study.

o Does not accomodate
dependent effects.
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Dependent effect size estimates
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Dependent effect sizes are prevalent

e Tanner-Smith & Lipsey (2015). Brief alcohol interventions for adolescents and
young adults: A systematic review and meta-analysis.

o 185 studies, 1446 effect size estimates
o 1-108 effect size estimates per study (median = 6, IQR = 3-12)

o Multiple outcome measures, multiple follow-up times, multiple treatment
conditions, multiple comparison groups

e Lehtonen et al. (2018). Is bilingualism associated with enhanced executive
functioning in adults?

o 152 studies, 891 effect size estimates
o 1-40 effect size estimates per study (median = 4)

e Bediou et al. (2018). Meta-Analysis of Action Video Game Impact on Perceptual,
Attentional, and Cognitive Skills.

o 70 cross-sectional studies, 88 samples, 194 effect size estimates

o 1-28 effect size estimates per study (median = 2)
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Limited tools for investigating selective |
with dependent effect sizes

¢ Ad hoc modifications to the data

o Aggregate effect sizes to remove dependence

o Conduct analysis within sub-groups

e Robust Egger's regression test (Rodgers and Pustejovsky, 2):
Tij = Bo + B1(SE); + €

o Meta-regression of effect size on a measure of precision (such as standard
error).

o Use robust variance estimation (clustering by sample) to account for effect
size dependency.

o Limited power except when there is very strong selective reporting.

o Asymmetric funnel plots are suggestive but ambiguous.
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* Ageneralized excess significance test
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An exploratory test of excess significance (TES)

e |oannidis and Trikalinos (2007) proposed an intuitive diagnostic for selective
reporting based on statistical significance at level .

o k: Total number of effect sizes (assuming one ES per sample)
o O:observed number of statistically significant effect sizes

o PJ Estimated power of study 7, assuming a common effect model or random
effects model.

o F = ijl P;: expected number of statistically significant effect sizes

e A binomial approximation for O in the absence of selective reporting:

—F
O ~ Binom/(k, E/k) or © ~ N(0,1)

VE(k—E)/k

e Excess of statistically significant effect sizes indicates selective reporting.
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Problems with TES

 Binomial approximationisn't correct (because P; are usually heterogeneous).

e Does not account for uncertainty in power estimates.
e Requires independent effect sizes.
e Many different, somewhat arbitrary ways of estimating power.

o Creates analytic flexibility in how TES is applied.

Goal: Generalize TES
e Account for uncertainty in power estimates
¢ Allow for dependent effect sizes
e Allow for systematic predictors / covariates

e Proper null distribution
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A meta-regression model

Tj:Xj,B+uj+ej

T j: set of effect size estimates for sample j

X : covariate matrix for sample j

B: Meta-regression coefficients

0: parameters describing random effects u;.

W ;: Weighting matrix for estimating meta-regression

Estimation

0 estimated by full/restricted maximum likelihood estimation or method of
moments.

B estimated by weighted least squares.
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TES as estimating equations

e Meta-regression estimating equations:

k
Sp=> X)W, (T, - X;8)
j=1
S, — alR(ﬂ? 0)
" T o6

¢ An additional estimating equation:

where

o Oj: number of statistically significant effect sizes from study 7
o Fj:expected number of statistically significant effect sizes, given the model
parameters B and @

* Inthe absence of publication bias, E (S;) = 0.
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Generalized excess significance test

e A cluster-robust score test statistic (Rotnizky & Jewell, 1990):

ZGEST _ Sﬂ'
A /VCR

where V “F is a cluster-robust estimate of Var(S;), accounting for estimation of

Band 6.

e Large-sample approximation (for large-enough k):
Z%P5T L N(0,1)
in the absence of selective reporting.

o Selective reporting indicated if ZEF5T > &~1(1 — a).
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Simulations: Type | error rates

(Correlated standardized mean differences)
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Simulations: Power comparison
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Discussion

GEST requires consistent estimation of mean and variance of the effect size
distribution in the absence of selection.

o Can accommodate meta-regression models.

o Canuse weighting schemes that are not inverse-variance.

Type | error rates are inflated when average effects are large and homogeneous.

o Small sample refinements still under investigation (cluster wild bootstrap?).

GEST estimates expected power marginally for each effect size.

o Does not consider the joint pattern of statistical significance.

Outstanding need for models that
o capture both selective outcome reporting and study-level selection.
o accommodate pre-registered studies, known to be fully reported.

o estimate strength of selection rather than using an assumption.
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Simulations: Type | error rates
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Simulations: Power comparison
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