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Abstract 

Meta-analyses often include studies that report multiple effect sizes based on a common pool of 

subjects, or that report effect sizes from several samples that were treated with very similar 

research protocols. The inclusion of such studies introduces dependence among the effect size 

estimates. When the number of studies is large, robust variance estimation (RVE) provides a 

method for pooling dependent effects, even when information on the exact dependence structure 

is not available. When the number of studies is small or moderate, however, test statistics and 

confidence intervals based on RVE can have inflated Type I error. This paper describes and 

investigates several small-sample adjustments to F-statistics based on RVE. Simulation results 

demonstrate that one such test, which approximates the test statistic using Hotelling’s T2 

distribution, is level-α and uniformly more powerful than the others. An empirical application 

demonstrates how results based on this test compare to the large-sample F-test. 

 

Keywords: cluster robust, meta-analysis, sandwich estimator, F-test, bias-reduced-linearization 
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Small-sample adjustments for tests of moderators and model fit using robust variance 

estimation in meta-regression 

Many research syntheses include studies that contribute multiple effect size estimates 

based on a common pool of subjects. While it is not generally reasonable to treat such effect 

sizes as independent, standard methods for quantitative synthesis provide no easy way to handle 

them. Rather, univariate meta-analysis methods are premised on the assumption that all of the 

effect size estimates are independent, while multivariate meta-analysis methods are premised on 

the assumption that the dependence structure of the effect size estimates is fully known. In real 

applications, neither approach is without problems. 

Dependent effect sizes are most often handled by averaging them into a single, synthetic 

effect size for each study. This approach allows the estimation of an average effect across studies 

(using univariate meta-analysis methods), but it leads to difficulties when researchers are 

interested in the relationship between effect sizes and moderator variables that vary within a 

single study. When such moderator relationships are of interest, some analysts apply a "shifting 

unit of analysis" approach (H. M. Cooper, 2010), wherein effect sizes within a study are 

aggregated only if they have the same value of a categorical moderator. For example, consider a 

synthesis of experimental studies, some of which report separate effect sizes for writing and 

reading measures. In order to estimate an overall average effect size, the writing and reading 

measures within each study would be averaged, then pooled together across studies. However, 

one might also be interested in determining if the findings differ for writing versus reading. In 

order to examine this, separate univariate meta-analyses could be conducted by combining only 

the writing (or reading) measures across studies. While this approach allows for average writing 

and reading measures to be calculated (thus providing descriptive information regarding their 
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differences) it does not allow for statistical comparisons to be conducted because the effects are 

correlated.  

A more principled approach to handling dependent effect sizes is to apply a multivariate 

meta-analytic model. If the effect sizes reported in the same study are conditionally independent 

– as occurs when they are calculated from different groups of individuals – then a hierarchical 

linear modeling approach can be used (Raudenbush & Bryk, 2002). However, when at least 

some effect sizes are collected on the same individuals, the assumptions of this hierarchical 

approach are not met and full multivariate meta-analysis is required. The multivariate meta-

analysis model requires good estimates of the correlation between dependent effect sizes (Gleser 

& Olkin, 2009), which typically are not available to the meta-analyst. For example, in a meta-

analysis that includes both writing and reading measures, one would need to know the 

correlation between the measures in order to estimate the dependence between the effect sizes, 

but this information is often not available from published reports. Lacking estimates of the 

dependence among the effect sizes nested within each study, the standard errors, confidence 

intervals, and hypothesis tests pertaining to grand-average effect sizes and meta-regression 

coefficients will be inaccurate.  

A recent innovation that addresses the challenges of handling dependent effect size 

estimates is robust variance estimation [RVE] (Hedges, Tipton, & Johnson, 2010). RVE is 

appealing because it allows for the inclusion of multiple, correlated effect sizes in a single meta-

analysis, without requiring full knowledge about their correlation structure. This allows the 

analyst to estimate average effect sizes and meta-regression coefficients (such as contrasts 

between writing and reading measures, as in the previous example), without having to aggregate 

effect size estimates in ad hoc fashion or to collect information about the correlation among 
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dependent effect size estimates. Due to these advantages, RVE has been widely employed, 

including meta-analyses in education (e.g., Wilson, Lipsey, Tanner-Smith, Huang, & Steinka-

Fry, 2011), psychology (e.g., Samson, Ojanen, & Hollo, 2012; Uttal et al., 2013), and 

intervention science (e.g., De Vibe, Bjørndal, Tipton, Hammerstrøm, & Kowalski, 2012; Tanner-

Smith, Wilson, & Lipsey, 2013). Software implementations of RVE are available in both R 

(robumeta package; Fisher & Tipton, 2014) and Stata (robumeta macro; Hedberg, 2011; Tanner-

Smith & Tipton, 2014), and to a limited degree in SPSS (see Tanner-Smith & Tipton, 2014).  

The statistical theory behind RVE is asymptotic, in that it provides an approximately 

unbiased estimator of the true sampling variance if the number of independent studies is large. 

However, when the number of studies is not sufficiently large, the estimator is biased downward 

and the Type I error rate of hypothesis tests based on RVE can be much too liberal (Hedges et 

al., 2010; Tipton, 2014). This is a serious limitation, given that at least half of meta-analyses in 

education and the social sciences contain fewer than 40 studies (Ahn, Ames, & Myers, 2012; 

Polanin & Pigott, 2014). To address this shortcoming, Tipton (2014) proposed small-sample 

corrections for hypothesis tests of single meta-regression coefficients (i.e., t-tests), which have 

close to nominal Type-I error even when the number of studies is small. This correction has 

enabled RVE to be implemented in meta-analyses with as few as 5 studies.  

In addition to single-coefficient tests, multiple-contrast hypothesis tests are also common 

in meta-analysis. In univariate meta-analysis, these tests are used to assess model fit, to compare 

nested models (i.e., incremental tests), and to determine if effect sizes are moderated by 

categorical variables with multiple levels. Such tests are all based on Q-statistics (e.g., Q-

between, Q-model), which are compared to a chi-squared reference distribution. However, no 

such tests are currently available in RVE. The aim of this paper is therefore to develop 
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procedures for testing multiple-contrast hypotheses, with a focus on finding a test that performs 

well in small samples. Although the tests that we develop are all generalizations of the methods 

developed in Tipton (2014) for small sample t-tests, the extension to multiple-contrast 

hypotheses involves non-trivial complications due to the multivariate features of the contrasts 

being tested.  

In the remainder of the paper, we consider five possible multiple-contrast hypothesis tests 

for RVE, all of which are based on approximations to the distribution of a Q-statistic (i.e., a 

Wald test statistic). We develop each approximation by generalizing previous work on simpler, 

specific cases of tests based on cluster-robust variance estimation, such as the multiple-group 

Behrens-Fisher problem and tests of regression coefficients based on heteroskedasticity-robust 

variance estimation. After reviewing RVE and the literature on t-tests, we present new analytic 

work describing several potential approximations. We then describe a large simulation study that 

compares these potential solutions. Finally, we illustrate the practical implications of the 

proposed small sample corrections in an example based on a meta-analysis conducted by Wilson, 

Tanner-Smith, Lipsey, Steinka-Fry, and Morrison (2011) and discuss implications for meta-

analytic practice.   

Robust variance estimation in multi-variate meta-regression 

We will develop methods under the general meta-regression model 

 
j j j XT β ε  (1) 

where β is a p × 1 vector of coefficients, Tj is a kj × 1 vector of effect size estimates from study j; 

Xj is a kj × p matrix of covariates; and εj is a kj × 1 vector of errors with mean zero and 

covariance matrix Σj, all for j = 1,…,m. This general meta-regression model encompasses 

estimation of an overall average effect size (i.e., using an intercept-only model), models with 
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categorical moderators, and models that include quantitative predictors. The model also 

encompasses univariate meta-analysis, where each study contributes kj = 1 effect size. For ease 

of notation, denote  1 ,...,
T

T

m

Ty y y ,  1 ,...,
T

T

m

TX X X ,  1 ,...,
T

T

m

Tε ε ε , and 

 1diag ,..., mΣ Σ Σ . Let 
1

m

j

jK k


  denote the total number of effect sizes. 

We shall consider tests for null hypotheses of the form H0: Cb = c for fixed q × p contrast 

matrix C and q x 1 vector c. For example, an omnibus test of regression specification could be 

written as , with q = p – 1. A test for a single meta-regression 

coefficient βs is a special case where q = 1, with c = 0 and C set to a 1 × p vector with entry s 

equal to one and all other entries equal to zero. 

Let  1, .iag .,d . mW WW  be a block-diagonal matrix of weights, which for the time 

being we will treat as arbitrary. Given this set of weights, the weighted least-squares estimate of 

β is 

 
1

m

j

T

j j j



 
  

 
b M X W T   

where  
1

T


M X WX . The exact variance of b is  

 
1

Var
m

T

j j j j

j

j



 
  

 
 Σb M X W W X M , 

which is a function of the weights Wj, design-matrices Xj, and study-specific covariances Σj. If 

the structure of Σj is fully known and the weights are defined so that  for j = 1,...,m, 

then the variance of b reduces to simply M. However, in practice it is often difficult to meet the 

assumption that the covariance structure is correctly modeled. The crucial advantage of RVE is 

1

j j

W Σ
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that it provides a means to estimate the variance of b without relying on this stringent 

assumption.  

The robust variance estimator 

A general expression for the RVE estimator of Var(b) is given by  

1

m
R T T T

j j j j j j j j

j

 
  

 
V M X W A e e A W X M      (2) 

where 
j j j Te X b  is the vector of residuals for study j and Aj is a kj × kj adjustment matrix. In 

the original formulation of Hedges et al. (2010), the adjustment matrices were set to identity 

matrices of dimension kj; Tipton (2014) considered other forms of adjustment matrices, which 

will be described below. Note that in RVE, the true covariance Σj is estimated by 
T

j je e . Although 

the estimate for any given study may be quite inaccurate when considered in isolation, under 

some general assumptions, VR nonetheless converges in probability to Var(b) as the number of 

studies increases (see Hedges et al., 2010 Appendix A).  

The RVE estimator can be used to construct Wald statistics for single- and multi-

parameter hypothesis tests.  A Wald-type test statistic for H0: Cb = c is given by 

      
1T R TQ


  CCb c CV Cb c   (3) 

It can be shown that, under the null hypothesis, Q follows a chi-square distribution with q 

degrees of freedom when the number of independent studies is sufficiently large. However, this 

asymptotic approximation can be quite poor when the number of studies is small or moderate, as 

we demonstrate in a later section. Moreover, it is not always clear when the sample is sufficiently 

large to trust the asymptotic approximation.  

Choice of weights 
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Thus far, we have introduced RVE for a general set of weights W = diag(W1,W2,…,Wm). 

While the RVE approach makes no requirements on these weights, the use of approximately 

inverse variance weights can improve the efficiency of the meta-regression estimates. However,  

when the correlation structure is unknown (thus necessitating RVE), it is not possible to calculate 

exact inverse-variance weights. Noting that the only role for weights is efficiency gains, Hedges 

et al (2010) provided two simplified options for weighting based upon “working” covariance 

models: “correlated effects” and “hierarchical effects.” Correlated effects are used when primary 

studies report multiple outcomes measured on the same individuals. For example, a primary 

study might report measures of both writing and reading performance, or might report outcomes 

from multiple follow-up times. Hierarchical effects are used when outcomes are collected on 

different groups of individuals, but those groups may share some common influences. For 

example, a primary study might report the results of two separate experiments conducted in the 

same lab, with the same subject pool and same laboratory protocols. In practice, it is common for 

both types of dependence to occur within the same study; the analyst then typically chooses the 

“working” model that matches the most common type of dependence structure in the studies to 

be meta-analyzed. Exact forms for suggested working models and weighting matrices can be 

found in Appendix A.  

Small-sample corrections for t-tests 

When testing a single meta-regression coefficient H0: βs = 0, the Wald statistic becomes 

simply 

 / R

s s sst b V   

where bs denotes entry s of b and R

ssV  is the sth diagonal entry of VR. In large samples, ts follows a 

standard normal distribution under the null hypothesis. For moderate sample sizes, Hedges et al. 
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(2010) suggested using the adjustment matrices  /
jj km m pA I to calculate VR (rather than 

identity matrices) and comparing the statistic to a t-distribution with m –  p degrees of freedom. 

However, evidence from several simulation studies indicates that, even with these corrections, 

the test has inflated Type-I error when there are fewer than 40 independent studies (Hedges et al., 

2010; Tipton, 2013, 2014; Williams, 2012).   

Tipton (2014) proposed alternative methods for testing single meta-regression 

coefficients, which involve changes to the adjustment matrices and to the degrees of freedom. 

The best-performing test used adjustment matrices proposed by McCaffrey, Bell, and Botts 

(2001), which make use of a working model for the study-specific covariances Σ1,...,Σm. Tipton 

proposed using adjustment matrices based on the same model that motivates the choice of 

approximately efficient weights Wj. In this case, the adjustment matrices are given by 

  
1/2

1/2 1/2 1 1/2 1/2T

j j j j j j j j


      

 
A W W W MX W WX   (4) 

where U-1/2 denotes the inverse of the symmetric square root of the matrix U, which satisfies U-

1/2UU-1/2 = I (see Appendix A for examples). This adjustment matrix is such that when the 

working covariance model is correct, the robust variance estimator VR based on these adjustment 

matrices is an exactly unbiased estimate of the variance of b (McCaffrey et al., 2001). In a 

simulation study, Tipton (2014) showed that using the adjustment matrices given in Equation (4) 

typically results in a small increase in VR, thus improving Type I error. However, in many 

situations use of the adjustment matrices on their own is not enough to bring the error within the 

nominal level; to do so, an additional correction to the degrees of freedom is required.  

Tipton (2014) considered a Satterthwaite approximation for the degrees of freedom of ts, 

again based on a working covariance model. Under the working model with W = Σ-1, the mean 

and variance of R

ssV  can be calculated from the design matrices Xj, weighting matrices Wj, and 
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adjustment matrices Aj. (Exact expressions for these quantities will be given in the next section.) 

The degrees of freedom corresponding to R

ssV  are approximated by 

    
2

2E / VarR R

s ss ssV V  .  (5) 

A test of H0: βs = 0 is then obtained by comparing ts to a t-distribution with νs degrees of 

freedom.  

In an extensive simulation, Tipton (2014) found that the Satterthwaite degrees of freedom 

correction led to larger improvements in Type I error than using adjustment matrices alone.  Her 

results also showed that t-tests based on combining both corrections are level-α so long as the 

degrees of freedom (νs) are larger than 4 or 5. When νs is smaller than 4 or 5, the empirical size 

of the test can be higher (or lower) than the stated α-level, leading to the suggestion that p-values 

not be reported for tests when νs is this small.  

Tipton also found that what was considered a “small” sample depended more on the 

degrees of freedom than on the number of studies. Depending upon features of the covariates, the 

degrees of freedom could vary wildly even if the sample size (m) is held constant. For example, 

consider a meta-regression analysis based on m = 40 independent studies, where interest is in 

testing a single factor that has two levels (A and B). If the studies are divided evenly across the 

levels, the degrees of freedom for that factor will be moderate (i.e., νs = m – p = 38). In contrast, 

if most of the studies are in one level (e.g., 36 in level B), then the degrees of freedom will be 

considerably smaller, indicating a smaller effective sample (νs = 5.21; see Table 2 of Tipton, 

2014). Because it is not possible to know if the sample is “small” without calculating these 

degrees of freedom, Tipton argued that the small-sample t-test should be used in all RVE 

analyses.  
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Small sample corrections to F-tests 

The goal of this paper is to develop a method for conducting multiple-contrast hypothesis 

tests based on RVE. As with the t-test developed by Tipton (2014) for single-parameter 

hypothesis tests, we seek a test that performs well in small samples, thus enabling broad 

application in meta-analysis. Following the degrees of freedom correction suggested by Hedges 

et al (2010), a simple, ad hoc test would be to use the test statistic F = Q / q, compared to an F-

distribution with q and m –  p degrees of freedom. As Tipton (2014) found for the analogous 

version of the t-test, our simulation study will show that this “naïve F-test” performs adequately 

only in very particular circumstances. One reason for its poor performance is that it uses the 

same degrees of freedom regardless of the contrasts being tested. Like the t-test proposed by 

Tipton (2014), a more principled test would take into account the features of the design matrix. 

The challenge in finding such corrections is that they involve the distribution of the random 

matrix  
1

R T


CV C , which is more difficult to approximate than the distribution of the single 

variate R

ssV .  

In order to identify potential approaches to approximating the distribution of Q, we first 

reviewed the literature on robust variance estimation outside of the meta-analysis context. 

Simpler forms of robust variance estimation are used in ANOVA, multivariate ANOVA, and 

multiple regression when there is concern about heteroskedasticity; robust variance estimation is 

also used in connection with generalized estimating equations. In each of these areas, previous 

research has investigated the small sample properties of hypothesis tests based on special cases 

of RVE. In this paper, we consider two broad strategies that draw on methods that perform well 

in these special cases. Importantly, in all of the methods to be considered, we will use the same 

adjustment matrices as implemented by Tipton (2014), the form of which is given in Equation 
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(4). These adjustment matrices are derived under a working covariance model with approximate 

inverse-variance weights.   

The first strategy is to approximate the sampling distribution of CVRCT using a Wishart 

distribution, which leads to test statistics that approximately follow Hotelling's T2 distribution (a 

multiple of an F distribution). Versions of this approach are found in the literature on 

heteroskedastic ANOVA (Zhang, 2013); MANOVA with unequal variance-covariance structures 

(Krishnamoorthy & Yu, 2004; Nel & van der Merwe, 1986; Zhang, 2012); and GEE models (Pan 

& Wall, 2002).  

The second strategy uses the spectral-decomposition of CVRCT to approximate the 

distribution of Q as a sum of independent univariate random variables. Using this decomposition, 

two specific approaches are considered. One approach, which has been considered in the 

literature on small-sample corrected hypothesis tests for linear mixed models (Fai & Cornelius, 

1996), uses a Satterthwaite approximation with estimated degrees of freedom. The other 

approach involves transforming the independent univariate random variables so that their sum 

more closely follows a chi-squared distribution. This second approach has been studied for the 

special case of heteroskedasticity robust variance estimation in ANOVA (Alexander & Govern, 

1994) and in multiple regression (Cai & Hayes, 2008).  

 In the remainder of this section, we develop five possible approaches based upon these 

two broad strategies, including three tests based on Hotelling’s T2 distribution and two tests 

based on the spectral decomposition approach. While these approaches take inspiration from the 

broader literature, none of the estimators have been developed or studied for the problem of 

robust variance estimation with correlated, dependent errors, as occur in multi-variate meta-

analysis.  
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Moments of VR 

Both of the broad strategies for approximating the sampling distribution of CVRCT 

involve estimating the mean and variance of linear combinations of the entries in VR.   Before 

describing the approximations in detail, we first derive expressions for these moments, as doing 

so simplifies the later presentation. Assume that ε1,…, εm are normally distributed with 

covariances Var(εj) = Σi. Let Ω denote the true variance of (Cb – c), i.e., Ω = CVar(b)CT, and 

note that the Q statistic can be written as  

 
1'Q  z D z  (6) 

for z = Ω-1/2(Cb – c) and D = Ω-1/2CVRCTΩ-1/2. Under the null hypothesis H0: Cb = c, z is 

normally distributed with mean zero and covariance Iq. Furthermore, if the weighting matrices 

are exactly inverse variance, then z is independent of e1,…,em and therefore also independent of 

D. The moments of D are given in the following theorem.  

Theorem 1. Let u1, u2, u3, u4 denote arbitrary, fixed q × 1 vectors. If ε1,…, εm are 

normally distributed with covariances Var(εj) = Σi, then  

  
1

1 2 1 2

T T T

j j

m

j

E


 
  

 
u u BDu ΣB u  (7) 

and 

  3 2 3 3 21 2 4 41

1

4 1

1

Cov ,T T T T T T T T
m m

i

T T

i j i j i j i j

j 

 u u u u u u u uDu Du B ΣB B ΣB B Σ B uB ΣBu ,  (8) 

where the q × K matrices B1,…,Bm are defined as  

   (9) 

and the subscript on the final term denotes the rows of the matrix corresponding to study j.  

Proof is given in Appendix B. 

 1/2 T

j j j j K j

 Ω WB CMX I XMXA W
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In practice, the moments of D will need to be estimated. One approach would be to 

estimate the Σj empirically using the residuals 
T

j je e . Another approach, introduced by Bell and 

McCaffrey (2002) and followed by Tipton (2014), is to instead use the same working model that 

was used to develop the weighting matrices Wj and adjustment matrices Aj. Results from 

simulation studies conducted by Bell and McCaffrey (2002) found that using empirical estimates 

tended to result in tests that were extremely conservative. For this reason, we focus on the 

second, model-based approach. When the working model is correct, so that W = Σ-1, VR is an 

exactly unbiased estimator of Var(b) = M, by which it follows that  1 2 1 2 1 2

T T T

qE  Du u uuI uu  

and Ω = CMCT. Consequently, the Bj matrices can be calculated from the contrast matrix C, 

design matrix X, and weighting matrix W.  

Hotelling's 𝑻𝟐 approximations 

We first consider approximating the sampling distribution of D by a Wishart distribution 

with scale matrix Iq, for some degrees of freedom η. Under this approximation, Q approximately 

follows Hotelling's T2 distribution with dimensionality q and degrees of freedom η, so that  

 .  (10) 

The question is then how to choose degrees of freedom η that approximate well the distribution 

of D.  

Let dst denote the entry in row s and column t of D and let I(s = t) be the indicator 

function that equals one if s = t and zero otherwise. For a random q × q matrix D such that ηD 

follows a Wishart distribution with η degrees of freedom and scale matrix Iq, the covariances 

among the entries of D satisfy 

  , ( ) ( ) (v (Co ) )st uvd d I s u I t v I s v I t u          (11) 
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for s,t,u,v = 1,…,q (Muirhead, 1982, Section 3.2.2).  For q > 1, the constraints on the covariances 

will not be satisfied exactly, and so an approximating value of η must be found. One choice, 

following Pan and Wall (2002), is to minimize the sum of squared differences between the left-

hand and right-hand sides, which leads to  

    
1 1 1 1 1 1

2 / Covar , .V
q q q q q q

A st st uv

s t s t u v

d d d
     

   
    

   
    (12) 

An alternative, which Pan and Wall (2002) mentioned but did not examine, is to minimize the 

sum of squared differences only over the unique entries in the covariance matrix of the lower-

triangle entries in D, which leads to  

      
1

1 1 1 1 1 1 1

Co2 Var / ,v Cov ,
q qs s s u t

B st st uv st sv

s t s t u v v

d d d d d


      

    
     

    
    .  (13) 

A further alternative, proposed by Zhang (2012, 2013) for the special cases of heteroskedastic 

one-way ANOVA and MANOVA, is to match the total variation in D (i.e., the sum of the 

variances of its entries) to the total variation of a Wishart distribution. This approach leads to  

 

 
1 1

( 1)

Var
Z q q

st

s t

q q

d



 



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Note that the variance of dst can be calculated from Equation (8) using the vectors u1 = u3 = js 

and u2 = u4 = jt, where the vector js has entry s equal to 1 and all remaining entries equal to zero 

and jt is similarly defined. Likewise, the covariance between dst and duv can be calculated u1 = js, 

u2 = jt, u3 = ju, u4 = jv. 

 In the simulation studies described in a later section, we will refer to the tests based on 

the approximation in Equation (10) as AHA, AHB, and AHZ (where “AH” refers to an 

“Approximate Hotelling” test), depending on whether the degrees of freedom are based on (12), 
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(13), or (14), respectively. For tests of single parameter hypotheses, all three of the AH degrees 

of freedom evaluate to  and the resulting tests are equivalent to the t-test with 

Satterthwaite degrees of freedom, as described by Tipton (2014). However, the AHA, AHB, and 

AHZ tests are not exactly equivalent to the tests proposed by Pan and Wall (2002) or by Zhang 

(2012, 2013) because we estimate the variability of D under the working covariance model, 

whereas these other tests are based on empirical estimates of the variability of D. 

Eigen-decomposition approximations 

Fai and Cornelius (1996) developed small-sample corrections for multi-parameter 

hypothesis tests in linear mixed models that better account for the uncertainty in variance 

component estimates. Their method is based on the eigen-decomposition of the estimated 

covariance matrix and ignores the sampling variation in the eigenvectors, instead focusing solely 

on the sampling distributions of the eigenvalues. We consider two similar small-sample 

corrections for test statistics based on RVE.  

Denote the eigen-decomposition of D as PΛPT, where P is an orthonormal matrix with 

eigenvectors p1,…,pq and Λ is a diagonal matrix of eigenvalues λ1,…,λq. The Wald test statistic 

can then be written as  
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for /T

s s st  p z . If we treat P as constant, then 1 ,...,T T

qp z p z  are distributed as independent, 

standard normal variates when the null hypothesis holds. Furthermore, E(λs) = 1 and Var(λs) can 

be calculated from Equation (8) with u1 = u2 = u3 = u4 = ps. We can thus approximate the 

distribution of t1,…,tm, by t distributions with degrees of freedom  

 112 / Var d 
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for s = 1,…,q. Note that in multi-parameter tests, the degrees of freedom f1,…,fq are typically not 

the same as the degrees of freedom for t-tests of single coefficients.  It can be shown that the two 

sets of degrees of freedom are identical only if the covariates being tested are orthogonal, which 

rarely occurs in practice. 

  Eigen-decomposition F (EDF) test. Fai and Cornelius (1996) considered an adjusted F 

test based on the above approximation, derived by matching the first two moments of δQ / q to 

an F(q, νF) distribution for some constant δ and some degrees of freedom νF. Assuming that 

t1,…,tm are uncorrelated, the correction terms are given by 
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where 

 
 

  1 1

2

and 2
1

2 2 4

s ss
Q Q

s s

q

s s

q

s

f ff
E V

f f f 



  
   .  

It is possible that some fs from Equation (16) may be less than 4, which may lead to infeasible 

values of VQ. We therefore truncate the fs at a value slightly higher than 4 when evaluating EQ 

and VQ. Note that when q = 1, and assuming that fs > 4, the constants will evaluate to δ = 1 and 

νF = f1; Q will therefore be compared to an F(1,f1) reference distribution, which is equivalent to 

using a t-test with Satterthwaite degrees of freedom. 

 Eigen-decomposition and transformation (EDT) test. A final small-sample correction 

also employs the eigen-decomposition of the Wald test statistic. We use a technique similar to an 

approach proposed by Alexander and Govern (1994) for heteroskedastic, one-way ANOVA, and 

further developed by Cai and Hayes (2008) in the context of multiple-contrast hypothesis tests 
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based on heteroskedasticity-robust variance estimation. Assume that the variates t1,…,tq from 

Equation (15) follow independent t-distributions with degrees of freedom f1,…,fq, respectively. 

Let g(t; f) be a transformation function that normalizes a t-distribution with f degrees of freedom, 

so that g(ts; fs) will be approximately unit-normal. It follows that the squared sum of the 

transformed variates 

  
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C fg t
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will be approximately distributed as a chi-square with q degrees of freedom. Following Cai and 

Hayes (2008), we use a normalizing transformation proposed by Hill (1970). Let  
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The transformation function is then given by  
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In contrast to the other tests under consideration, all of which are based on comparing the Q 

statistic to a scaled F distribution, the EDT test involves altering the internal structure of Q.  For 

q = 1, the EDT approach amounts to a method for evaluating the p-value corresponding to a t-

statistic after transforming it to a chi-squared statistic; the result will be equal to a Satterthwaite 

approximation so long as the transformation function is accurate. Finally, it should be noted that 

the EDT approach is not exactly equivalent to the test proposed by Cai and Hayes (2008) 

because we estimate the degrees of freedom via the working model, rather than from the 

empirical residuals. 

Other approaches 
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In the course of this research, we also investigated a variety of other possible corrections. 

For example, it is possible to combine the Hotelling’s T2 approximation with the eigen-

decomposition approach; to combine the eigen-decomposition approach with a simulation-based 

reference distribution; and to approximate the moments of Q directly via Taylor expansions, 

without assuming that D follows a Wishart distribution. These approaches did not result in 

estimators that performed anywhere near as well as those included here, and for this reason we 

do not describe them further. Interested readers should contact the authors for further 

information.  

Simulation study 

In order to assess and compare the performance of the five hypothesis-testing procedures 

described in the previous section, we conducted a large simulation study. The main aim of the 

study was to determine which of the five tests provides the most accurate Type-I error rates over 

a range of conditions likely to be encountered in practice. We focused in particular on tests that 

are level-α, where the empirical Type-I error rate does not exceed the nominal rate under any 

condition studied. We used the naïve F-test as a benchmark because it is analogous to the 

original t-test presented in Hedges et al (2010) and because its performance is uniformly superior 

to the asymptotic chi-squared test. The simulations were limited to models where the null 

hypothesis is correct; considerations of power for specific alternative hypotheses remains a topic 

for future research. 

Simulation design 

The design of the simulation study largely followed that of Simulation Study #2 in Tipton 

(2014), which examined the performance of Satterthwaite-type corrections for single-contrast 

hypothesis tests. As in the previous work, we focused on correlated standardized mean difference 
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effect sizes, as would be obtained from an intervention study that evaluated treatment effects on 

several outcome variables.1 We set the correlation between outcomes within study (denoted ρ) to 

values of .0, .5, or .8 in order to represent null, moderate, or high levels of within-study 

correlation. We also varied the proportion of the total variation in effect size estimates due to 

between-study heterogeneity in true effect sizes (denoted I2) across a very wide range, including 

values of .00, .33, .50, .75, .90. Non-zero values of ρ or I2 led to dependence among the effect 

size estimates within a given study. We varied the number of independent studies per meta-

analysis (m) over a very wide range (i.e., 10, 15, 20, 30, 40, 60, 80, 100). Finally, each simulated 

meta-analysis included studies contributing as few as one and as many as ten effect sizes. The 

per-group sample size per study (nj) ranged from 32 to 130 and included the same values as in 

the second simulation from Tipton (2014). We chose to use a variable number of effect sizes per 

study and variable sample sizes in order to emulate conditions likely to be observed in practice, 

as well as to induce a greater degree of imbalance in the designs, thus creating a more 

challenging scenario for the tests being evaluated.  

Tipton (2014) showed that besides sample size, the performance of the asymptotic 

approximations is strongly influenced by features of the covariates and contrasts involved in the 

hypothesis test. In particular, the Satterthwaite degrees of freedom for a t-test depend on the 

degree of balance and leverage in the covariate (see also MacKinnon, 2013; McCaffrey et al., 

2001). Covariates with large imbalances (e.g., a binary variable with very few 1’s) or with cases 

of extreme leverage (e.g., most values between 0 and 30, with a couple of values as high as 100) 

have much smaller degrees of freedom, even when the number of studies was moderate to large.  

The simulation used five covariates representing a range of variable types often 

encountered in practice, including two binary and three continuous covariates. Exact values of 
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the covariate vectors are available in the online supplementary materials. X1 is a binary, study-

level covariate that exhibits large imbalances; it is equal to 1 in 15% of the studies. X2 is a binary 

covariate that varies within study and is also highly unbalanced, equal to 1 for approximately 

10% of the effect sizes overall and between 0% and 20% of effects within a given study. X3 is a 

continuous, study-level covariate that is roughly normally distributed.  X4 is a continuous 

covariate, also roughly normal, that varies within study. X5 is a continuous, effect-size level 

covariate that has a highly skewed distribution. This variable is generated from a log-normal 

distribution, leading to cases with leverage values 4 to 70 times the average. Tipton (2014; Table 

2) showed that the Satterthwaite degrees of freedom associated with individual t-tests of these 

covariates range from very small (X5: df = 4.35; X1: df = 5.21) to small (X2: df = 9.36; X3: df = 

12.41; X4: df = 15.84) even with as many as 40 studies. This combination of covariates allowed 

us to explore how well these corrections perform in the “worst” cases; an estimator that performs 

well in these conditions will likely perform well in practice.  

 The RVE estimator and the degrees of freedom in the proposed hypothesis tests all 

involve specification of a working model for the covariance structure. In order to maintain 

consistency with previous work and with the way RVE is applied in practice, the simulations 

used a working model based on the “correlated effects” weights proposed by Hedges et al. 

(2010), which are described in greater detail in Appendix A. Throughout, we assumed a working 

model in which there is no between-study heterogeneity in true effects (i.e., I2 = 0), which 

corresponds to the use of fixed-effects weighting. It is important to note that the working model 

(used for weights and adjustments) and the actual data-generating model were not equivalent; 

instead, the two models diverged as ρ and I2 increased, which allowed us to examine the extent to 

which the tests are robust to model misspecification. This feature of the simulation also emulates 
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what the analyst will encounter in practice, when the true data-generating model is unknown and 

the working model will seldom be correctly specified.  

This combination of parameters resulted in a total of 120 conditions for the data-

generating model under study (8 sample sizes × 3 values for ρ × 5 values for I2). For each 

combination of simulation conditions, we fit several different regression specifications and tested 

several contrasts involving different combinations of the covariates. The combinations of 

regression specifications fell into two categories. First, we ran “omnibus” tests based on models 

with p – 1 covariates (plus an intercept term with coefficient β0), where the null hypothesis was 

H0: β1 = β2 = … = βp-1 = 0. For each simulated meta-analysis, we fit all possible model 

specifications with 2, 3, 4, or 5 covariates (for a total of 26 specifications) and calculated the 

omnibus test with dimension q = p – 1. Second, based on a model specification including all 5 

covariates, we ran “subset” tests of all possible combinations of q = 2, 3, or 4 of the covariates 

(for a total of 25 unique hypotheses tested). For each simulated meta-analysis and each of the 

five tests, we recorded the p-value for each combination of model specifications and hypotheses. 

In total, each of the five tests was therefore evaluated under 6,120 unique conditions (120 unique 

data-generating models × 51 unique model specifications and hypotheses). For each of the tests 

under each of the conditions, we determined the Type-I error rates corresponding to α = .01, .05, 

and .10 by calculating the proportion of p-values less than α, across 10,000 replications. Monte 

Carlo margins of error are therefore approximately 0.19% for α = .01, 0.42% for α = .05, and 

0.59% for α = .10. In the figures that follow, the dashed lines depict upper bounds on the 

empirical error rate of a level-α test. 

Results 
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 This section describes five main findings from the simulation study. The first three 

findings address the question of which of the proposed tests performs best both terms of both 

absolute and relative Type I error. The final two findings focus on the roles of degrees of 

freedom and model misspecification. For all but the last finding, we include a figure illustrating 

selected results of the simulations; in many cases, we also relate the findings to corresponding 

findings from Tipton (2014) regarding single-parameter t-tests. Full simulation results are 

available in the online supplementary materials. 

Finding 1: Naïve F-test performance 

 The naïve F-test compares F = Q / q to an F-distribution with q and m – p degrees of 

freedom, where q is the number of contrasts being tested, m is the total number of studies in the 

meta-analysis, and p is the number of parameters in the meta-regression model. This test is the 

multivariate analogue to the small sample correction originally provided by Hedges et al (2010) 

for the t-test, which Tipton (2014) found to be accurate only in rather large samples. For multiple 

contrast hypothesis tests, we found that the Naïve F adjustment does not control Type I error 

except in very large samples; additionally, the performance of the test varies greatly in relation to 

the number of parameters tested (q).  

 Figure 1 presents results comparing the sample size (m) to the Type I error rate, for each 

of the three α-levels under study and for four values of q (=2,3,4,5). Note that typically the true 

Type I error is above nominal, and even in the best case (when q = 2 and m = 100), the results 

are not within the simulation error bounds for a level-α test. When there are fewer than 40  

studies, the Type I error is often over twice as large as nominal (e.g., 0.10 for α=0.05). Even with 

100 studies, the true Type I error is often 50% larger than nominal (e.g., 0.075 for α = 0.05; 0.15 
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for α = 0.10) or even larger (e.g., 0.02 for α =0.01). Interestingly, when q is small and the sample 

is small (m  < 30), the naïve F-test tends to do better when m is smaller rather than larger (and 

particularly for α = 0.01). This trend occurs because the degrees of freedom correction exerts a 

larger penalty when m is very small. Of course, even this relatively large penalty is inadequate, 

as the Type I error remains far above nominal in all cases. Furthermore, the performance of the 

Naïve F degrades as the number of parameters being tested increases, with the largest Type I 

error rates occurring when q = 5 and the number of studies is small.  

 

FIGURE 1: Type I error of naïve F-test by number of studies and values of q. 

Note: Solid lines indicate the stated α level; dashed lines indicate bounds for simulation error. 
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Finding 2: AH tests are nearly level-α 

 Figure 2 presents the range of Type I error rates of the five proposed tests in relation to 

the number of studies (m) and the number of parameters in the hypothesis test (q). The figure is 

limited to error rates for α = 0.05, although we note that the trends are very similar for α = 0.01 

and 0.10. We do not include the naïve F-test in this figure because all 5 of these tests outperform 

the naïve F-test under every condition studied. 

 Figure 2 reveals several trends. First, Type I error for the EDF and EDT tests typically 

approach the nominal values from above, whereas the AHA, AHB, and AHZ tests approach the 

nominal values from below. This trend holds in relation to both m and q. For example, when 

there are 20 studies, as q increases, the Type I error rates of the EDF and EDT tests increase to 

values far above nominal (close to 0.10), while the error rates decrease towards zero for the 

AHA, AHB, and AHZ tests. For each value of q, the error rates of all five tests converge toward 

the nominal values as the number of studies increases. 

 Second, the EDF and EDT tests have Type I error rates that cover a wide range of values 

across the parameters and hypothesis specifications under study (as indicated by the long 

whiskers on each box).  Because it is not possible to know a priori in which design condition a 

particular analysis will fall, it makes more sense to compare the maximum Type I error observed 

across tests. While the EDT and EDF tests have Type I error rates that are closest to nominal on 

average, they also exhibit error rates that are far above nominal under a large number of design 

conditions that cannot be identified a priori. In comparison, the AHA, AHB, and AHZ tests are 

typically more conservative and are also nearly always level-α, with a maximum error rate of 

0.059 across all conditions studied. In describing further trends, we therefore focus only on the 

three AH tests.  
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FIGURE 2: Type I error for α = 0.05 of 5 alternative tests 

 

Note: Solid lines indicate the stated α level; dashed lines indicate bounds for simulation error. 

 

Finding 3: Type I error of AHZ is closest to nominal 

 Ideally, a hypothesis testing procedure should not only control the Type I error rate to be 

at most α, but should have Type I error as close to the nominal level as possible. Having 

established that AHA, AHB, and AHZ are all level-α under nearly all of the conditions studied, 

we examined which of the tests have empirical Type I error rates closest to the stated values. To 

address this question, we compared the Type I error rates of each pair of the three tests for each 

of the parameter combinations in the simulation. We do not depict the comparisons involving 

AHA because its performance was clearly worse than the other two tests. Figure 3 plots the Type 

I error rates of AHZ against those of AHB for each of the 6,120 unique conditions in the 

simulation; separate panels correspond to each α level under study. In this figure, points above 
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the diagonal line represent tests and parameter combinations for which the Type I error of the 

AHZ test is closer to α than that of the AHB test.  

FIGURE 3: Type I error for α = 0.05 for AHB versus AHZ 

Note: The solid and dashed horizontal lines indicate the stated α level and simulation error 

bound, respectively, for the AHZ test; the vertical lines indicate the same quantities for the AHB 

test. Points above the diagonal line correspond to conditions where the Type I error rate of AHZ 

is closer to nominal than that of AHB.  

 

 Figure 3 illustrates that the maximum Type I error of the AHB test is slightly smaller than 

that for the AHZ test, but these differences are minimal. It is also apparent that the Type I error 

of the AHZ test is closer to the stated α-level for every parameter combination, although both 

tests tend to be conservative. For example, when α = 0.05 and the Type I error of AHB is nearly 

0.00, the error of AHZ ranges from 0.00 to 0.04. Furthermore, the median Type I error for the α 

= 0.05 test is 0.0254 for AHZ but only 0.0044 for AHB; in over 79% of cases, the Type I error of 

AHB is less than the median error of AHZ. In summary, AHZ is the most accurate level-α test 

across nearly all combinations of data-generating conditions and hypothesis specifications 

considered.  

Finding 4: Relationship between m and degrees of freedom 

 Tipton (2014) found that for single-parameter t-tests, the performance of the test was 

more closely related to the degrees of freedom, which depend on the degree of balance or 
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leverage in the covariate, than to the sample size alone. We observed a similar pattern for 

multiple-contrast tests. Figure 4 illustrates the relationship between the number of studies and the 

degrees of freedom for the AHZ test. For the covariate combinations we studied here, the 

degrees of freedom are always smaller than the number of studies, and the range of degrees of 

freedom grows as the number of studies increases. For example, the degrees of freedom range 

from 1.5 to 10.7 with 20 studies, while they range from 13.8 to 60.5 with 100 studies. Put 

another way, degrees of freedom smaller than 20 (indicating “small” effective samples) can be 

observed across a wide range of actual sample sizes (i.e., from m = 40 to 100).  Just as Tipton 

(2014) concluded, this means that the best indicator of the need for a small-sample correction 

would appear to be the degrees of freedom of the small-sample correction itself.   

 

FIGURE 4: Degrees of freedom of AHZ test by number of studies (m) 

 

 

 

Finding 5: Robustness to model misspecification 
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  The results reported so far have looked at overall performance, without attending to how 

performance relates to the parameters of the data-generating model, such as the correlation (ρ) 

and the between-study effect size variability (I2). While the other parameters under study (e.g., 

the number of independent studies, the number of effect sizes per study, features of the 

covariates) are known to researchers, these two parameters are unknown. Recall that in RVE, 

and throughout this paper, a “working” model of the covariance structure is required for 

calculation of weights, adjustment matrices, and development of the degrees of freedom. In the 

simulation study, the tests were always constructed based on the “correlated effects” working 

model wherein it was assumed that ρ = 1 and I2 = 0 (i.e., fixed effects weights). An important 

question, then, is how well the AHZ test performs when this assumed structure is incorrect, as is 

likely to occur in practice.   

In order to investigate the robustness of the AHZ test to misspecification of the working 

model, we simulated data using a wide range of values of ρ and I2 and then compared the Type I 

error. In conducting this analysis, we found no consistent pattern in the relationship between 

Type-I error and ρ, but did find that the maximum Type I error tends to increase slightly as I2 

increases. We also observed that when fixed effects weights (i.e., assuming I2 = 0) were used, the 

AHZ test was always level-α so long as the actual I2 was less than 1/2. Values of I2 above ½ 

correspond to a high degree of working model misspecification, particularly given that the 

default in most RVE analyses is to use random effects weights. Additionally, even when the 

working model is badly mis-specified (true I2 > ½), the test still contains Type I error to a much 

greater extent than the naïve-F, EDF, or EDT tests. 

Application 
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 To illustrate the performance of the AHZ test in practice, as well as to better understand 

differences between it and the benchmark of the naïve F-test, we applied both tests to a meta-

analysis of dropout prevention and intervention programs conducted by Wilson et al (2011). This 

systematic review focused on school- or community-based programs aimed at primary and 

secondary students that measured school completion or school dropout outcomes and that were 

reported between 1985 and 2010. The review included 152 independent reports of experimental 

or quasi-experimental studies, which together included 317 independent samples. Multiple 

outcome measures were reported for some of the samples, resulting in a total of 385 log-odds-

ratio effect sizes.  

 In the original meta-analysis, a meta-regression model was provided predicting the log-

odds-ratio effect size for general programs (Model 3, Table 3.4, Wilson et al); this model 

included methodological characteristics (e.g., study design indicators, level of attrition, an 

independent evaluator scale), participant characteristics (% male, %white, average age), and 

program characteristics (e.g., implementation quality, indicators of program format). We 

illustrate the use of multi-parameter hypothesis tests using the same model specification, though 

our analysis deviates from Wilson et al. in one important respect. The original analysis treated 

the 317 samples as independent (ignoring the nesting of samples within studies) and used RVE 

with a “correlated effects” working model. In contrast, our re-analysis treated the 152 studies as 

independent and employed RVE with a “hierarchical effects” working model. We took this 

approach because it led to a smaller sample size (though still very large compared to most meta-

analyses). Additionally, we repeated the analysis using a subset of 32 studies, which is a typical 

sample size for meta-analyses in education and the social sciences (Ahn et al., 2012; Polanin & 
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Pigott, 2014). The subset included the 32 studies that reported 3 or more effect sizes (whether 

from independent samples or multiple measures).  

 For each of these re-analyses, we tested five separate multiple-contrast hypotheses about 

the meta-regression model, including tests of the role of study design (q = 2); the outcome 

measure type (q = 3); evaluator independence (q = 3); implementation quality (q = 2); and 

program format (q = 3). In the original study, evaluator independence and implementation 

quality were included as scales, varying from 1 to 4 or 1 to 3, respectively. For the sake of 

illustration we treated these covariates as categorical and modeled them using indicator 

variables. Notably, the original study did not report hypothesis tests for any of the covariates 

because multiple-contrast hypothesis testing procedures were not available in RVE software at 

the time. 

 Table 1 reports the results of the naïve F and AHZ tests for each of the five hypotheses. 

The upper panel includes results based on the small subset of 32 of the studies; the lower panel 

includes results based on all 152 studies. While not illustrated here, the results found in the 

second panel are qualitatively similar to those found when using the “correlated effects” 

approach applied by Wilson and colleagues.  
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 Several notable patterns are apparent from Table 1. First, the F-statistic for the AHZ test 

is always smaller than that for the Naïve F test, reflecting the multiplicative correction involved. 

Second, the degrees of freedom for the AHZ test are usually smaller – and sometimes much 

smaller – than those for the naïve F-test, and vary depending on the hypothesis being tested. 

Such variation reflects imbalances and skewness in covariate distributions. For example, across 

both panels, evaluator independence has the smallest degrees of freedom of any of the 

hypotheses (i.e., df = 6; df = 17); these low degrees of freedom are due to unequal allocation of 

effect sizes to the four categories in both the subset (i.e., 0, 10, 25, and 195 effect sizes) and full 

samples (i.e., 6, 33, 43, and 303 effect sizes). Third, the combination of smaller F-statistics and 

degrees of freedom results in p-values that are uniformly smaller for the AHZ test compared to 

the naïve F-test. For some tests and conditions these p-value differences do not impact 

conclusions (as with implementation quality in the full sample) while in other cases the 

Table 1:  Comparison of Naïve-F tests and AHZ tests in Dropout Example 
 

Sample Factor q 

Naïve F test* AHZ test 

F p-val F df p-val 

32 studies 
Study design 2 3.19 0.081 2.93 11.0 0.096 

 
Outcome measure 3 1.05 0.407 0.84 7.7 0.512 

 
Evaluator independence 2 0.32 0.735 0.26 4.6 0.781 

 
Implementation quality 2 4.02 0.049 3.69 11.0 0.059 

 
Program format 3 1.19 0.357 0.98 9.1 0.444 

152 studies 
Study design 2 0.23 0.796 0.22 42.9 0.800 

 
Outcome measure 3 0.91 0.436 0.84 21.5 

0.488 

 
Evaluator independence 3 3.11 0.029 2.78 16.8 0.073 

 
Implementation quality 2 14.15 <0.001 13.78 36.9 <0.001 

 
Program format 3 3.85 0.011 3.65 37.5 0.021 

Notes: 

df = degrees of freedom. p-val = p-value. 

* The Naïve F test uses 11 degrees of freedom in the small sample (m = 32) and 130 degrees of freedom in the 

full sample (m = 152). 
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inferences change. For example, in the small sample, the p-value for implementation quality is 

less than .05 for the naïve F-test but greater than .05 for the AHZ test. Similarly, the inference for 

evaluator independence based on the full sample of 152 studies is sensitive to whether the small-

sample corrections are employed.  

Discussion and Conclusion 

Robust variance estimation has rapidly become a widely used tool for combining effect 

sizes in meta-analysis. The fact that RVE does not require strong assumptions about either the 

error distribution or covariance structure has allowed analysts to summarize relationships across 

all collected effect sizes, instead of artificially reducing the data to fit the statistical method. 

However, while the method performs well in large-samples, practical applications of RVE are 

limited by the fact that hypothesis tests based on RVE have inflated Type I error rates in small 

and moderate samples.  

In this paper, we developed and compared five possible multi-contrast hypothesis tests 

for use in RVE in meta-analysis. We also examined the performance of the asymptotic chi-

squared test and a simple, ad hoc test: the naïve F test. The simulation results indicate that the 

asymptotic test and the naïve F-test perform very poorly in nearly all of the conditions under 

consideration, even when the meta-analysis includes as many as 100 studies. The poor 

performance of the naïve F-test is due to the fact that its degrees of freedom do not account for 

covariate features, such as the degree of balance or leverage, that impact the Type I error of the 

test. Given the typical sizes of meta-analyses in the educational and social sciences, the chi-

squared test and naïve F-test should not be used in practice. Instead, a small-sample corrected 

test should always be employed for multiple contrast hypothesis tests based on RVE.  
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 While the AHA, AHB, and AHZ tests presented here all control the Type I error rate—

even in very small samples—the AHZ test clearly outperforms the others. Except under 

conditions of extreme model misspecification, the AHZ test maintains the nominal level-α and 

has Type I error rates closer to the stated α-level than any other test studied. Furthermore, even 

with highly mis-specified models, its maximum Type I error was only slightly beyond simulation 

error (e.g., 0.0594 when α = .05). It is important to highlight, too, that we would seldom expect 

to encounter such extreme model misspecification in practice because the default approach in 

RVE is to estimate the degree of between study heterogeneity, rather than assuming I2 = 0.  

 A further advantage of the AHZ test is that it performs well even with degrees of freedom 

close to zero. This is counter to the results found in Tipton (2014) for t-tests, where the Type I 

error was sometimes too liberal when the Satterthwaite degrees of freedom were smaller than 4 

or 5. To see why the tests behave differently, note that the dimension of the test (q) impacts both 

the test-statistic itself and the reference distribution: as q increases, the multiplier [(η – q + 1)/η] 

and the denominator degrees of freedom (η – q + 1) both decrease. The difference is starkest 

when comparing q = 1 and q = 2 for a model with a fixed number of covariates. When q = 1, the 

multiplier reduces to 1, whereas for q = 2, the multiplier is strictly less than 1; similarly, the 

denominator degrees of freedom shift from η to η – 1. These two factors penalize the power of 

the test for any value of q > 1, thus leading to a test that is level-α, even when the degrees of 

freedom are near zero.   

 The example presented in the previous section demonstrates that using a test that 

appropriately controls Type I error – here AHZ – can have two implications for the findings of a 

meta-regression analysis. First, the estimated degrees of freedom in a meta-regression model 

using AHZ can vary considerably from covariate to covariate, and are typically far below those 
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used by the naïve F-test (i.e., m – p). When a covariate is extremely imbalanced (e.g., evaluator 

independence in the example), the degrees of freedom can be particularly small. This behavior 

highlights that a small-sample test should always be preferred, even in what may seem to be a 

very large meta-analysis, Second, the impact of the degrees of freedom can lead to different 

conclusions.  

 There are a few limitations to the work presented in this paper, which point towards 

outstanding questions where continued research is needed. While we have examined a variety of 

tests that have good small-sample performance, our scope was limited to closed-form corrections 

for Wald-type test statistics. Thus, we have not considered iterative procedures such as 

bootstrapping, although some recent work in econometrics has proposed promising techniques 

for bootstrapping in settings with cluster-dependent observations (Webb & MacKinnon, 2013). 

Neither have we considered corrections such as saddlepoint approximations. McCaffrey and Bell 

(2006) present evidence that, for tests of single regression coefficients, a saddlepoint 

approximation may provide even more accurate error control than the Satterthwaite 

approximation studied in Tipton (2014). However, developing saddlepoint approximations to 

Wald-type test statistics for multiple contrast hypotheses is not straight-forward. 

Like Tipton (2014) we have also employed a working model approach to estimating the 

degrees of freedom. Some results from previous research on small-sample corrections for 

cluster-robust variance estimation suggest that this approach may lead to less conservative tests 

than using an empirical estimate of the covariance matrix (McCaffrey et al., 2001), although we 

have not investigated this in our simulations. Additionally, our simulation study focused on a 

single type of covariance structure–the correlated effects model–in conjunction with a working 

model and weight matrices developed in Hedges et al (2010). This weighting scheme is not 
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necessarily fully efficient, even when the between-study variance is estimated (see Appendix A). 

Future work should investigate the extent to which the choice of working model and weights 

influences the size and power of the tests in small samples.  

As with any simulation study, our conclusions are limited by the data-generating models and 

parameters considered. While we have included a wide range of values, we have not studied all 

possible conditions encountered in meta-analysis, and have focused only on standardized mean 

difference effect sizes. Work by Tipton (2013) and Williams (2012) suggests that RVE performs 

similarly for log-odds-ratios, log-risk-ratios, risk differences and regression coefficients, but no 

work to date has investigated the performance of small sample tests with families of effect sizes 

other than standardized mean differences. Additionally, our examination has focused exclusively 

on Type I error, and has not considered power. Future work will need to examine the power of 

the recommended tests under non-null alternative hypotheses. It would be particularly useful to 

compare the RVE approach (with the AHZ test) with other approaches such as fully model-based 

multivariate meta-analysis.  Finally, we note that the tests developed here are not limited in 

application to meta-analysis. In future work we plan to investigate the performance of these tests 

under other models that involve cluster dependence, such as hierarchical linear models and 

generalized estimated equations.  

Note 

1. The exact data-generating model was as follows. Let 1j denote a kj × 1 vector of 1’s; let Ij 

denote a kj × kj identity matrix; and let  1 1 1T

j jj j    IΨ  be a compound-symmetric 

correlation matrix with intra-class correlation ρ. Each meta-analysis contained a total of m 

studies. For study j, we generated kj standardized mean differences by simulating the numerator 

and denominator. The numerators were generated from a multivariate normal distribution with 
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mean 0 and covariance matrix  2 2 /T

j j j jn 1 Ψ1 , where nj represents the per-group sample size 

and τ2 represents the between-study variance in true effects. The denominators were generated by 

simulating diagonal elements from a Wishart distribution with 2nj – 2 degrees of freedom and 

scale matrix Ψj, dividing by 2nj – 2, and taking the square roots. For ease of interpretation, we re-

parameterized the between-study variance using the I2 measure of heterogeneity. 
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Appendix A: RVE working models and weights 

 

 The methods presented in Hedges et al. (2010), in Tipton (2014), and in this paper require 

the specification of a working model for the covariance structure. Hedges et al. (2010) provide 

two possible working models likely to be found in meta-analyses: correlated effects and 
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hierarchical effects. In the correlated effects model, the effect sizes from study j are assumed to 

have covariance 

     Σcj = τ2Jj + ρvj(Jj – Ij) + vjIj, 

where Ij is a kj × kj identity matrix; Jj is a kj × kj matrix of 1’s; τ2 is a measure of the variation in 

study-average effect sizes across studies; vj is the estimation error variances for the kj effect sizes 

in study j, which is assumed constant within studies (vij = vj); and ρ is an assumed constant 

correlation between effect sizes. In the hierarchical effects model, the effect sizes are assumed to 

follow  

Σhj = τ2Jj + ω2Ij + Vj., 

where ω2 is a measure of the within-study variation in true effect sizes and Vj = diag(v1j,…,vkjj) is 

a kj × kj diagonal matrix of the estimation error variances in study j. Importantly, these working 

models are simplified versions of what could happen in practice. For example, in Σcj, the 

correlation ρ is assumed constant between all effect sizes and across all studies. Hedges et al 

provide method-of-moments estimators for τ2 and ω2.  

 Based on these working models and estimated variance components, Hedges et al 

propose the use of approximately inverse variance weights. For the correlated effects model, they 

propose to use Wcj = 1 / [kj(v.j+τ2)] Ij, where v.j = Σvij/kj is the average effect size variance in 

study j; for the hierarchical effects model, they propose to use Whj =  diag(w1j,…,wkjj), where wij 

= 1/(vij + τ2 + ω2). Note that even under the assumed covariance structures Σcj and Σhj, the 

proposed weights are not exactly inverse-variance. For example, Σcj and Σhj are non-diagonal 

while Wcj and Whj are diagonal.  The fact that the weights are only approximately inverse 

variance is not problematic, since in practice we have found that once weights are within the 

right ballpark, changes to the weights have only small effects on precision.  
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Appendix B: Mean and variance of VR 

 This section provides a proof of Theorem 1. Begin by noting that D, which is a function 

of the RVE estimator, can be written as 
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where Bj is defined in Equation (9). From the properties of quadratic forms for multivariate 

normal random variables, it follows that  
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as given in Equation (7). Furthermore,  
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which is equivalent to Equation (8). 


