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Direct observation of behavior 

• Quantities of interest 
• Prevalence: proportion of time that a behavior occurs 

• Incidence: rate at which new behavioral events begin 

• Intensity, contingency, others 

 

• Applications in psychology and education research 
• Measurement of teaching practice 

• Measurement of student behavior 

• Evaluating interventions for individuals with disabilities 

• Other examples in animal behavior, organizational psychology, social 
work, exercise physiology 
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Observation recording methods 

• How to turn direct observation of a “behavior stream” into 
data? 

 

• Continuous recording methods 
• Produce rich data, amenable to sophisticated modeling 

• Effort-intensive 

 

• Discontinuous recording methods 
• Less demanding methods needed in field settings 

• Momentary time sampling 

• Interval recording 

• Other possibilities? 
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Outline 

• Model for behavior stream as observed 

• Momentary time sampling 

• Interval recording 

• Some novel proposals  

• Efficiency considerations 
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A model for the behavior stream 
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Assumptions 

1. Event durations:  

2. Interim times: 

3. Event durations and interim times are all mutually 
independent. 

4. Process is in equilibrium. 

 

Under this model: 

• Prevalence ϕ = μ / (μ + λ) 

• Incidence ζ = 1 / (μ + λ) 

Alternating Poisson Process 
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Exp(1/ ), 1, 2, , ..~ 3 .jD j 

Exp(1/ ), 1, 2, , ..~ 3 .jE j 
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Momentary time sampling (MTS) 
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• (K + 1) moments, equally spaced at intervals of length L.  

• Observer records the presence or absence of a behavior at 
each moment 

• Recorded data are 

( ), 0,...,k Y kL k KX  

X0 = 0 X1 = 1 X2 = 0 X3 = 0 X4 = 1 X5 = 1 X6 = 1 X7 = 1 X8 = 0 

Session time 



Model for MTS data 
• Under the alternating Poisson process, X1,…,XK  follow a 

discrete-time Markov chain (DTMC) with two states  
(see e.g., Kulkarni, 2010). 
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MTS model, continued 

• Maximum likelihood estimators of ϕ and ζ have closed form 
expressions (Brown, Solomon, & Stephens, 1975). 

 

• But        under more general models. 

 

• Extensive literature, lots of generalizations 
• stopping rules for observation time  

(Brown, Solomon, & Stephens, 1977, 1979; Griffin & Adams, 1983) 

• Irregular observation times (e.g., Cook, 1999) 

• Random effects to describe variation across subjects  
(e.g., Cook et al., 1999) 
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Partial interval recording (PIR) 
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• Divide period into K intervals, each of length L.  

• For each interval, observer records whether behavior 
occurred at any point during the interval. 

• Recorded data are 

 

 

 

 

 

 

U1 = 1 U2 = 1 U3 = 0 U4 = 1 U5 = 1 U6 = 1 U7 = 1 U8 = 1 
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PIR, continued 
• Unlike MTS, the mean of PIR data is not readily 

interpretable:  
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Model for PIR data 
• Define Vk as the number of consecutive intervals where 

behavior is present:  

 

 

• Under the alternating Poisson process, V1,…,VK  follow a 
DTMC on the space {0,1,2,3,…}. 
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Whole interval recording (WIR) 
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• Divide period into K intervals, each of length L.  

• For each interval, observer records whether behavior 
occurred for the duration of the interval. 

• Recorded data are 

 

 

 

 

 

 

• Equivalent to PIR for absence of event. 

W1 = 0 W2 = 0 W3 = 0 W4 = 0 W5 = 1 W6 = 1 W7 = 0 W8 = 0 
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Augmented interval recording (AIR) 
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• Divide period into K/2 intervals, each of length 2L.  

• Use MTS at the beginning of each interval, to record Xk-1. 

• If Xk-1 = 0, use PIR for the remainder of the interval. 

• If Xk-1 = 1, use WIR for the remainder of the interval. 

 

 

 

 

 

X0 = 0 X1 = 0 X2 = 1 X3 = 1 X4 = 0 

U1 = 1 U2 = 1 W3 = 1 W4 = 0 

Session time 
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Model for AIR data 
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• Define Zk = Uk + Wk + Xk . 

• Under the alternating Poisson process, Z1,…,ZK/2 follow a DTMC on 
{0,1,2,3}, with transition probabilities πab= Pr(Zk = b | Xk-1 = a) 
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Intermittent transition recording (ITR) 
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• Divide period into K/2 intervals, each of length 2L.  

• Use MTS at the beginning of each interval, to record Xk-1. 

• Record time until next transition as Tk. 

 

 

 

 
X0 = 0 X1 = 0 X2 = 1 X3 = 1 X4 = 0 

T1 T2 T3 >2L T4 

Session time 
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• Under the alternating Poisson process, T1,X1, …,TK/2,XK/2  
have the property that 

F(Tk,Xk | T1,X1,…,Tk-1,Xk-1) = F(Tk,Xk|Xk-1) 

Model for ITR data 
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X=0 X=1 

p0(L-t) 1 - p0(L-t) 

p1(L-t) 1 - p1(L-t) 

T | X=1 

T | X=0 

fμ(t) 

fλ(t) 



Asymptotic relative efficiency 
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• Procedure p, q ∈ {MTS, PIR, AIR, ITR} 

•     are maximum likelihood estimators based on 
procedure p 

•                             are asymptotic variances based on inverse of  
expected information matrix. 
 

• Asymptotic relative efficiency of p versus q 
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PIR AIR ITR
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PIR AIR ITR
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PIR AIR ITR
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blue = column is more efficient 
red = row is more efficient 



• Evaluating these models & methods 
• Field testing 

• When is it okay to treat ML estimates from individual sessions as 
“pre-processing”? 

 

 

• Lots still to do 
• Build data-collection software 

• Extensions to between-period regression models 

• Random period/subject effects 

• PIR, AIR, ITR under other distributional assumptions? 

 

 

Future work 
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Questions? Comments? 

pusto@u.northwestern.edu 
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PIR model 
• Transition probabilities are uglier than MTS: 

 
 
 
where 
 
 
 
and f(j) is the j-fold recursion of f. 
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AIR, continued 

24 

Event occurring 
at time (k-1)L? 

Event ends 
before time 
kL? 

Event begins 
before time 
kL? 

Xk-1=1, 
Uk=1 

Xk-1=0, 
Wk=0 

Yes 

No 

Wk=1 

Wk=0 

Yes 

No 

Vk=1 

Vk=0 

Yes 

No 

Behavior stream MTS Interval recording Novel proposals  Efficiency 



AIR model 

25 Extras 

• Transition probabilities are given by 
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• Under alternating Poisson process, 

 

 

 

 

 

 

ITR model 
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