In an earlier post about sandwich standard errors for multi-variate meta-analysis, I mentioned that Beth Tipton has recently proposed small-sample corrections for the covariance estimators and t-tests, based on the bias-reduced linearization approach of McCaffrey, Bell, and Botts (2001). You can find her forthcoming paper on the adjustments here. My understanding is that these small-sample corrections are important because the uncorrected sandwich estimators can lead to under-statement of uncertainty and inflated type I error rates when a given meta-regression coefficient is estimated from only a small or moderately sized sample of independent studies (or clusters of studies). Moreover, it can be difficult to determine exactly when you have a large enough sample to trust the uncorrected sandwiches.
I wanted to try out these small-sample corrected sandwich estimators for a meta-analyses project that I’m working on. Beth and one of her students have written an R package called robumeta that implements the sandwich covariance estimator and small-sample corrections as described in her paper. However, for my project I want to use the metafor package, which doesn’t provide these methods. I’ve therefore created a set of functions that implement the sandwich covariance estimators and small-sample corrections for models estimated using the rma.mv function in metafor. Here is the complete code. Sorry, there’s no further documentation at the moment (beyond the rest of this post).
 Back to top